Dynamics analysis and chaos identification of a decoupled parallel mechanism concerning clearance

HOU Yu-lei1, ZHANG Zhan-ye1, LI Ming-yang1, WANG Yi1, ZENG Da-xing1, LI Hui-jian2

Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (8) : 211-218.

PDF(2973 KB)
PDF(2973 KB)
Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (8) : 211-218.

Dynamics analysis and chaos identification of a decoupled parallel mechanism concerning clearance

  • HOU Yu-lei1, ZHANG Zhan-ye1, LI Ming-yang1, WANG Yi1, ZENG Da-xing1, LI Hui-jian2
Author information +
History +

Abstract

Taking a two rotational decoupled parallel mechanism independent proposed as object, the structure composition of the mechanism was described. Considering the clearance condition exists in assembly and operational process, the dynamics model was established in this paper. The dynamics simulation was performed based on ADAMS software, and the variation conditions of the displacement, velocity, acceleration and contact force of the mechanism corresponding to presence or not of the kinematic pair clearance, different pair clearance and driving velocity were analyzed. The chaos phenomenon in the dynamics behavior of the decoupled parallel mechanism was identified with the Poincare section mapping method, the Poincare maps were plotted, and the effects of the clearance on the dynamic characteristics of the mechanism was revealed. The research results showed that there exists the chaos phenomenon in the decoupled parallel mechanism concerning clearance, which possess certainly guiding significance for the further nonlinear dynamics research.

Key words

decoupled parallel mechanism / clearance / dynamics / chaos identification

Cite this article

Download Citations
HOU Yu-lei1, ZHANG Zhan-ye1, LI Ming-yang1, WANG Yi1, ZENG Da-xing1, LI Hui-jian2. Dynamics analysis and chaos identification of a decoupled parallel mechanism concerning clearance[J]. Journal of Vibration and Shock, 2016, 35(8): 211-218

References

[1] 周凤岐, 孔令云. 一类非线性系统的混沌控制[J]. 航空学报. 2007, 28(6): 1443-1448.
Zhou Fengqi, Kong Lingyun. Chaos Control for a Class of Nonlinear System[J]. Acta Aeronautica Et Astronautica Sinica. 2007, 28(6): 1443-1448..
[2] Aline S, Marcelo A. Comparative Analysis of Chaos Control Methods: A Mechanical System Case Study[J]. International Journal of Non-Linear Mechanics. 2011, 46(8): 1076-1089.
[3] Emmanuel D, Blanchard, Adrian Sandu, et al. A Polynomial Chaos-based Kalman Filter Approach for Parameter Estimation of Mechanical Systems[J]. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME. 2010, 132(6): 061404.
[4] Franck S Humberto Y, Francesca L. Polynomial Chaos Representation for Identification of Mechanical Characteristics of Instrumented Structures[J]. Computer-Aided Civil and Infrastructure Engineering. 2011, 26(3): 173-189.
[5] James H T, Saied S S. Chaos in Nonlinear Dynamic Systems: Helicopter Vibration Mechanisms[C]. 2007 Mediterranean Conference on Control and Automation, MED. 2007, 4433847.
[6] Zukovic M, Cveticanin L. Chaos in Non-Ideal Mechanical System with Clearance[J]. JVC/Journal of Vibration and Control. 2009, (15)8: 1229-1246.
[7] 金国光, 李东福,何颖, 杨世明, 吴艳荣. 柔性变胞机构中的混沌现象研究[J]. 天津工业大学学报. 2009, 28(4): 58-60, 67.
JIN Guoguang,LI Dongfu,HEYing,YANG Shiming,WU Yanrong. Research of Chaos of Flexible Metamorphic Mechanism[J]. Journal of Tianjin Polytechnic University. 2009, 28(4): 58-60, 67.
[8] 李立, 李开富, 陈永. 平面串联型冗余度机器人的混沌运动研究[J]. 中国机械工程. 2003, 14(17): 1512-1515.
Li Li, Li Kaifu, Chen Yong. On the Chaotic Motion of Planar Serial Kinematically Redundant Robot[J]. China Mechanical Engineering. 2003, 14(17): 1512-1515.
[9] 王国庆, 刘宏昭, 何长安. 非线性接触模型在多间隙机构混沌分析中的应用[J]. 机械科学与技术. 2005, 24(6): 636-638.
Wang Guoqing, Liu Hongzhao, He Changan. Application of Nonlinear Contact Model in Chaos Analysis of a Mechanism with Clearance Joints[J]. Mechanical Science and Technology. 2005, 24(6): 636-638.
[10] 王三民, 沈允文, 董海军. 含间隙和时变啮合刚度的弧齿锥齿轮传动系统非线性振动特性研究[J]. 机械工程学报. 2003, 39(2): 28-32.
Wang Sanmin, Shen Yunwen, Dong Haijun. Nonlinear Dynamical Characteristics of a Spiral Bevel Gear System with Back-Lash and Time-Varying Stiffness[J]. Chinese Journal of Mechanical Engineering. 2003, 39(2): 28-32.
[11] 陈学森, 董海军, 刘晓宁. 含时变啮合刚度的间隙非线性齿轮系统的混沌控制[J]. 机械科学与技术. 2006, 25(9): 1035-1037.
Chen Xuesen, Dong Haijun, Liu Xiaoning. Chaos Control of a Nonliner Gear System with Clearance and Time-varying Stiffness[J]. Mechanical Science and Technology. 2006, 25(9): 1035-1037.
[12] 马洪涛, 薛殿伦. 外部激励下行星换向机构的分岔及混沌[J]. 中国机械工程. 2013. 24(23): 3129-3139.
Ma Hongtao, Xue Dianlun. Bifurcation and Chaos of Planetary Reverse System to External Excitation[J]. China Mechanical Engineering. 2013. 24(23): 3129-3139.
[13] 谢进, 刘朝晖, 陈永. 驱动关节运动已知的平面2R欠驱动机械臂混沌运动的分析[J]. 机械设计与研究. 2013(增): 254-256.
XIE Jin, LIU Zhaohui, CHEN Yong. Kinematic Analysis of 2R Planar Underactuated Manipulator
with Knowing the Motion of the Actuated Joint[J].Machine Design and Research. 2013(supplement): 254-256.
[14] Zhang J G, Chu Y D, Li X F, et al. Using Proportional and Different Controller to Control Chaos in Non-Autonomous Mechanical System[J]. International Journal of Modelling, Identification and Control. 2009, 8(1): 4-9.
[15] Hou Yulei, Zeng Daxing, Zhang Zhanye, Wang Changmei and Hu Xinzhe. A Novel Two Degrees of Freedom Rotational Decoupled Parallel Mechanism. Applied Mechanics and Materials. 2012, 215-216: 293-296.
[16] 侯雨雷, 张占叶, 胡鑫喆, 曾达幸. 新型两转动自由度完全解耦并联机构及其特性[J]. 哈尔滨工业大学学报. 2014, 46(9): 80-85.
Hou Yulei, Zhang Zhanye, Hu Xinzhe, Zeng Daxing. A Novel 2-DOF Fully Decoupled Rotational Parallel Mechanism and Its Characteristics[J]. Journal of Harbin Institute of Technology. 2014, 46(9): 80-85.
[17] 王国庆, 刘宏昭, 何长安. 含间隙连杆机构非线性行为研究[J]. 机械设计. 2005, 22(3): 12-13, 34.
Wang Guoqing, Liu Hongzhao, He Changan. Research on nonlinear behavior of link mechanism with clearance joint[J]. Journal of Machine Design. 2005, 22(3): 12-13, 34.
 
PDF(2973 KB)

592

Accesses

0

Citation

Detail

Sections
Recommended

/