Rotating machinery fault diagnosis based on KSLPP and RWKNN

Wang Xuedong Zhao Rongzhen Deng Linfeng

Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (8) : 219-223.

PDF(1470 KB)
PDF(1470 KB)
Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (8) : 219-223.

Rotating machinery fault diagnosis based on KSLPP and RWKNN

  • Wang Xuedong  Zhao Rongzhen  Deng Linfeng
Author information +
History +

Abstract

Aiming at the questions high dimension and low precision of the recognition for rotating machinery fault diagnosis, a intelligent fault diagnosis methods based on kernel supervised locality preserving projection and K nearest neighbor weighted by feature selection ReliefF algorithm(RWKNN) was proposed. KSLPP can effectively extract nonlinear information in original feature data set, at the same time make full use of class information in dimension reduction projection, make the sample minimize the dispersion within class, maximum the separation between classes. Then ,the sensitive low dimension feature data set fed into K nearest neighbor weighted by feature selection ReliefF algorithm to recognize the fault type. RWKNN can highlight the contribution rate of different features for classification, strengthen the sensitive characteristics, weaken the irrelevant features, improve the classification accuracy and robustness. At last, the validity of the proposed method was verified by the typical fault vibration signal of rotor.

Key words

 fault diagnosis / kernel supervised locality preserving projection(KSLPP) / feature selection ReliefF / weighted K-nearest neighbor

Cite this article

Download Citations
Wang Xuedong Zhao Rongzhen Deng Linfeng. Rotating machinery fault diagnosis based on KSLPP and RWKNN[J]. Journal of Vibration and Shock, 2016, 35(8): 219-223

References

[1] 苏祖强, 汤宝平, 姚金宝. 基于敏感特征选择与流形学习维数约简的故障诊断[J]. 振动与冲击, 2014, 33(3): 70-75.
     Su Zuqiang, Tang Baoping, Yang Jinbao. Fault diagnosis method based on sensitive feature selection and manifold learning dimension reduction[J]. Journal of Vibration and Shock, 2014, 33(3): 70-75.
[2] 梁胜杰, 张志华, 崔立林, 等. 基于主成分分析与核独立成分分析的降维方法[J]. 系统工程与电子技术, 2011, 33(9): 2144-2148.
Liang Shengjie, Zhang Zhihua, Cui Lilin, et al. Dimensionality reduction method based on PCA and KICA[J]. Systems Engineering and Electronics, 2011, 33(9): 2144-2148.
 [3] He Xiaofei, Niyogi P. Locality Preserving Projections[C]// Thrun S, Saul L K, Scholkopf B, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2004, 16: 153-160.
 [4] 张志伟, 杨帆, 夏克文, 等. 一种有监督LPP算法及其在人脸识别中的应用[J]. 电子与信息学报, 2008, 30(3): 539-541.
    Zhang Zhiwei, Yang Fan, Xia Kewen, et al. A supervised LPP algorithm and its application to face recognition[J]. Journal of Electronics & Information Technology, 2008, 30(3): 539-541.
[5] 申中华, 潘永惠, 王士同. 有监督的局部保留投影降维算法[J]. 模式识别与人工智能, 2012, 23(2): 233-239.
    Shen Zhonghua, Pan Yonghui, Wang Shitong. A supervised locality preserving projection algorithm for dimensionality reduction[J]. Pattem Recognition and Aitificial Intelligence, 2012, 23(2): 233-239.
[6] 祝磊, 朱善安. KSLPP:新的人脸识别算法[J]. 浙江大学学报(工学版), 2007, 41(7): 1065-1069.
Zhu Lei, Zhu Shanan. KSLPP:new algorithm for face recognition[J]. Journal of Zhejiang University(Engineering Science), 2007, 41(7): 1065-1069.
[7] Jian Cheng, QingShan Liu, Hanqing Lu, et al. Supervised kernel locality preserving projections for face recognition[J].
Neurocomputing, 67(2005): 443–449.
[8] SONGBO T. An effective refinement strategy for KNN text classifier[J]. Expert Systems with Applications, 2006, 30: 290-298.
 [9] 李锋, 汤宝平, 陈法法. 基于线性局部切空间排列维数化简的故障诊断[J]. 振动与冲击, 2012, 31(13): 36-40.
Li Feng, Tang Baoping, Chen Fafa. Fault diagnosis model based on dimension reduction using linear local tangent space alignment[J].Journal of Vibration and Shock, 2012, 31(13): 36-40.
 [10] D.H. Pandya, S.H. Upadhyay, S.P. Harsha. Fault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNN[J]. Expert Systems with Applications, 40(2013): 4137–4145.
 [11] Kononenko I. Estimation attributes: Analysis and extensions of RELIEF[C]// Proceedings of the 1994 European Conference on Machine Learning. Catania: Springer Verlag, 1994: 171-182.
[12] 霍天龙, 赵荣珍, 胡宝权. 基于熵带法与PSO优化的SVM转子故障诊断[J]. 振动、测试与诊断, 2011, 31(3): 279-284.
Huo Tianlong, Zhao Rongzhen, Hu Baoquan. Fault diagnosis for rotor systems based on entropy Band method and support vector machine optimized by PSO[J]. Journal of Vibration, Measurement & Diagnosis, 2011, 31(3): 279-284.
[13] 杨艺, 韩德强, 韩崇昭. 基于排序融合的特征选择[J]. 控制与决策, 2011, 26(3): 397-401.
Yang Yi, Han Deqiang, Han Chongzhao. Study on feature selection based on rank-level fusion[J]. Control and Decision, 2011, 26(3): 397-401.
[14] 于达仁, 胡清华, 鲍文. 融合粗糙集和模糊聚类的连续数据知识发现[J]. 中国电机工程学报, 2004, 24(6): 205-210.
Yu Daren, Hu Qinghua, Bao wen. Combining rough set methodolgy and fuzzy clustering for knowledge discovery from quantitative data[J]. Proceedings of the CSEE, 2004, 24(6): 205-210.
[15] 陈法法, 汤宝平, 马婧华, 等. 基于遗传退火优化MSVM的齿轮箱故障诊断[J]. 振动、测试与诊断, 2014, 34(4): 699-704.
Chen Fafa, Tang Baoping, Ma Jinghua, et al. Gearbox Fault diagnosis based on multi-kernel support vector machine optimized by genetic simulated annealing algorithm[J]. Journal of Vibration, Measurement & Diagnosis, 2014, 34(4): 699-704.
 
PDF(1470 KB)

Accesses

Citation

Detail

Sections
Recommended

/