Free vibration characteristics of an euler-bernoulli beam on a viscoelastic foundation based on nonlocal continuum theory

ZHANG Da-peng, LEI Yong-jun

Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (1) : 88-95.

PDF(1249 KB)
PDF(1249 KB)
Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (1) : 88-95.

Free vibration characteristics of an euler-bernoulli beam on a viscoelastic foundation based on nonlocal continuum theory

  • ZHANG Da-peng, LEI Yong-jun
Author information +
History +

Abstract

The vibration characteristics of a nonlocal damped Euler-Bernoulli beam on a nonlocal viscoelastic foundation were studied based on the nonlocal viscoelasticity theory here. The generalized Maxwell viscoelastic model, the velocity-dependent external damping model and the nonlocal viscoelastic foundation model were employed to establish the governing vibration equations of the beam system. A transfer function method was used to obtain natural frequencies and the corresponding modal shapes in a closed form for the Euler-Bernoulli beam with arbitrary boundary conditions. The proposed models were validated by comparing the obtained results with the available ones in literature. Subsequently, a detailed parametric study was conducted to examine the effects of nonlocal and viscoelastic parameters of the Euler-Bernoulli beam, and nonlocal parameters, stiffness and length of the foundation on natural frequencies of the beam system. The results demonstrated that the proposed dynamic modeling and analysis methods for dynamic characteristics of a nonlocal damped Euler-Bernoulli beam on a nonlocal viscoelastic foundation are effective and correct.
 

Key words

free vibration / nonlocal foundations / Euler-Bernoulli beams / nonlocal elasticity theory / transfer function method

Cite this article

Download Citations
ZHANG Da-peng, LEI Yong-jun. Free vibration characteristics of an euler-bernoulli beam on a viscoelastic foundation based on nonlocal continuum theory[J]. Journal of Vibration and Shock, 2017, 36(1): 88-95

References

[1] Y. Lei. Finite element analysis of beams with nonlocal foundation[A]. 47th AIAA/ASME/ASCE/ ASC Structures, Structural Dynamic, and Materials Confere[C], Newport, Rhode Island. May 2006: 1-11.
[2] D. Wang, M.I. Friswell, Y. Lei. Maximizing the natural frequency of a beam with an intermediate elastic support[J]. Journal of Sound and Vibration. 2006, 291:1229-1238.
[3] K. Kiani. Vibration analysis of elastically restrained double-walled carbon nanotubes on elastic foundation subjected to axial load using nonlocal shear deformable beam theories[J]. International Journal of Mechanical Sciences, 2013, 68: 16-34.
[4] I. Mehdipour, A. Barari, A. Kimiaeifar, G. Domairry, Vibrational analysis of curved single-walled carbon nanotube on a Pasternak elastic foundation [J]. Advances in Engineering Software, 2012, 48: 1-5.
[5] Y. Lei, T. Murmu, A. Adhikari, etal. Dynamic characteristics of damped viscoelastic nonlocal Euler-Bernoulli beams[J]. European Journal of Mechanics A/Solids, 2013, 42:125-136.
[6] S. M. Kim. Vibration and stability of axial loaded beams on elastic foundation under moving harmonic loads[J]. Engineering Structures. 2004, 26: 95–105.
[7] D. Thamviratnam, Y. Zhuge. Free vibration analysis of beams on elastic foundation [J]. Computers and Structures. 1996, 60, 971-980.
[8] K.B. Mustapha, Z.W. Zhong. The thermo- mechanical vibration of a single-walled carbon nanotube studied using the Bubnov-Galerkin method[J]. Physica E. 2010, 43, 375-381.
[9] 彭震,陆海翔,杨志安. Winkler地基梁在温度场中受简谐激励作用下的主共振和主参数共振分析[J]. 机械强度. 2007, 29(4): 695-698.
 PENG Zhen, LU Haixiang, YANG Zhian. Analysis on primary resonant and primary parametric resonant of harmonically driven on Winkler foundation in temperature field [J]. Journal of Mechanical Strength. 2007, 29(4): 695-698.
[10] 赵伟东,杨亚平. 弹性地基上加热梁受简谐激励的主共振响应[J]. 青海大学学报(自然科学版). 2010, 28(1): 5-8.
 ZHAO Weipeng, YANG Yaping. The main resonance response of a heating beam on elastic foundation under simple harmonic energizing [J]. Journal of Qinghai University (Nature Science).  2010, 28(1): 5-8.
[11] 朱幼麟. 弹性支承连续梁与弹性地基梁的静力及动力分析[J]. 工程力学. 1987, 4(3):95-103.
 ZHU Youlin. The static and dynamic analysis of continous beam on continous beam on elastic suppotrs or elastic foundation[J]. Engineering Mechanics. 1987, 4(3):95-103.
[12] 苏超, 姜弘道, 谭恩会. 粘弹性基础梁计算方法及其应用[J]. 河海大学学报. 2000, 28(5): 101-105.
 SU Chao, JIANG Hongdao, TAN Enhui. Computation method and application to viscoelastical foundation beam[J]. Journal of Hohal University. 2000, 28(5): 101-105.
[13] 胡安峰, 谢康和, 应宏伟, 钱磊. 粘弹性地基中考虑桩体剪切变形的单桩水平振动解析理论[J]. 岩石力学与工程学报. 2004, 23(9): 1515-1520.
 HU Anfeng, XIE Kanghe, YING Hongwei, QIAN Lei. Analytical theory of lateral vibration of single pile in visco-elastic subgrade considering shear deformation [J]. Chinese Journal of Rock Mechanics and Engineering. 2004, 23(9): 1515-1520.
[14] 杨林桢, 孔祥阳, 王炜. 粘弹性地基上梁的解析解[J]. 黑龙江交通科技. 2007, 1:26-27.
 YANG Linzhen, KONG Xiangyang, WANG Wei. Analytical solution of beams on the viscoelastic foundation [J]. Heilongjiang Jiaotong Keji. 2007, 1:26-27.
[15] E.Winkler. Die lehre von der llustizitat und festigkeit[J], Dominicus,Prague,1867.
[16] 申志彬. 基于非局部弹性理论的微纳米质量传感器振动特性研究[D]. 长沙:国防科学技术大学,2012.
 Shen Zhibin. Vibration characteristics of micro/nano mass sensor via nonlocal elasticity theory[D]. Changsha: National University of Defense Technology, 2012.
[17] A.C. Eringen. On differential equations of nonlocal elasticity and solution of screw dislocation and surface waves [J]. Journal of Applied Physics. 1983, 54: 4703-4710.
[18] A.C. Eringen. A unified continuum theory of electrodynamics of liquid crystals [J]. International Journal of Engineering Science. 1997, 35: 1137- 1157.
[19] W.Q. Wang, C.F. Lu, Z.G. Bian. A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation [J]. Applied Mathematical Modelling. 2004, 28:877-890.
[20] I.E. Avramidis, K. Morfidis. Bending of beams of three-parameter elastic foundation [J]. International Journal of Solids and Structures. 2006, 43:357-375.
[21] Y. Ayvaz, K. Ozqan. Application of modified Vlasov model to free vibration analysis of beams resting on elastic foundations [J]. Journal of Sound and Vibration. 2002, 255:111-127.
[22] D. Thambiratnam, Y. Zhuge. Free vibration analysis of beams on elastic foundation[J]. Comprters and Structures, 1996, 60:971-980.
[23] L. Sun. A closed form solution of a Bernoulli-Euler beam on a viscoelastic foundation under harmonic line loads[J]. Journal of Sound and Vibration. 2001, 242: 619–627.
[24] K. Kiani. Vibration analysis of elastically restrained double-walled carbon nanotubes on elastic foundation subjected to axial load using nonlocal shear deformable beam theories[J]. International Journal of Mechanical Sciences, 2013, 68: 16-34.
[25] A. C. Eringen. Nonlocal continuum field theories [M]. New York: Springer, 2002.
[26] A. C. Eringen. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[J]. Journal of Applied Physics.1983,54(9):4703-4710.
[27] Y. Lei, S. Adhikari, M.I. Friswell. Vibration of nonlocal Kelvin-Voigt viscoelastic damped Timoshenko beams[J]. International Journal of Engineering Science. 2013,66-67:1-13.
[28] 杨挺青. 粘弹性力学[M]. 武昌:华中理工大学出版社,1990.
 YANG Tingqing. Viscoelastic Mechanics [M]. Wuchang:Press of Huazhong University of Science and Technology, 1990.
[29] C. Polizzotto. Non-local elasticity and related variational principles[J]. International Journal of Solids and Structures, 2001, 38: 7359–7380.
[30] G. Ahmadi. Linear theory of nonlocal viscoelasticity [J]. International Journal of Non-Linear Mechanics, 1975, 10: 253–258.
[31] B. Yang, C. Tan. Transfer-functions of one-dimensional distributed parameter-systems[J]. Journal of Applied Mechanics-transactions of the Asme, 1992, 59: 1009-1014.
[32] Y.C. Lai, B.Y. Ting, W.S. Lee, W.R. Becker. Dynamic response of beams on elastic foundation [J]. Journal of Structural Engineering, 1992, 118: 853-858.
[33] D. Thambiratnam, Y. Zhuge. Free vibration analysis of beams on elastic foundation[J]. Computers and Structures, 1996, 60: 971-980.
[34] S. Timoshenko, D.H. Yong, W. Weaver. Vibration problems in engineering[M]. John Wiley and Sons, New York, 1974.
PDF(1249 KB)

566

Accesses

0

Citation

Detail

Sections
Recommended

/