Satellite Deployable Antenna Release Strategy Optimization  Based on Shock Response Analysis

WANG Peng-peng, GAO Bo, AI Yong-qiang, NIU Bao-hua

Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (10) : 57-62.

PDF(2312 KB)
PDF(2312 KB)
Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (10) : 57-62.

Satellite Deployable Antenna Release Strategy Optimization  Based on Shock Response Analysis

  • WANG Peng-peng, GAO Bo, AI Yong-qiang, NIU Bao-hua
Author information +
History +

Abstract

Various types of pyrotechnic devices are widely used in aerospace engineering, the ignition of pyrotechnic devices will induce shock load on aerospace structure, and excite its modal response. For sufficient lock stiffness margin, satellite deployable antennas usually include several HLD (hold and release) mechanisms, different ignition orders of the pyrotechnic devices will cause different shock response, and therefore optimization should be carried on to reduce the potential damages on antenna structure. The release strategy optimization is conducted on a satellite deployable antenna contains three HLD mechanisms, and the optimization result show that, the acceleration magnitude of shock response in key area is reduced sharply, which reveals the probable destroy possibility introduced by shock environment is effectively controlled. The feasibility and effectiveness of the proposed release strategy optimization method was validated by flight experiences.

Key words

Shock Response Spectrum / Deployable Antenna / Optimization

Cite this article

Download Citations
WANG Peng-peng, GAO Bo, AI Yong-qiang, NIU Bao-hua . Satellite Deployable Antenna Release Strategy Optimization  Based on Shock Response Analysis[J]. Journal of Vibration and Shock, 2017, 36(10): 57-62

References

[1] 柯受全. 卫星环境工程和模拟试验[M]. 北京: 宇航出版社, 1996.
KE Shou-quan. Satellite environment engineering and test[M]. BeiJing: China Astronautic Publishing House, 1996.
[2] 张欢, 刘天雄, 李长江. 航天器火工冲击环境防护技术现状与应用[J]. 航天器工程, 2014, 23(2): 104-113.
ZHANG Huan, LIU Tian-xiong, LI Chang-jiang. Status and application analysis of spacecraft pyroshock protection techniques[J]. Spacecraft Engineering, 2014, 23(2): 104-113.
[3] 赵俊锋, 刘莉, 周思达等. 月球探测器软着陆冲击力学环境研究[J]. 振动与冲击, 2012, 31(3): 37-42.
ZHAO Jun-feng, LIU Li, ZHOU Si-da, et al. Dynamic environment research for soft landing for lunar lander[J]. Journal of Vibration and Shock, 2012, 31(3): 37-42.
[4] 段家希, 李志来, 曹乃亮等. 包带式解锁支座冲击环境研究[J]. 振动与冲击, 2013, 32(9):  16-20.
DUAN Jia-xi, LI Zhi-lai, CAO Nai-liang, et al. Shock environment of clamp-band unlocking support[J]. Journal of Vibration and Shock, 2013, 32(9): 16-20.
[5] 张建华. 航天产品的爆炸冲击环境技术综述[J]. 导弹与航天运载技术, 2005, 3: 30-36.
ZHANG Jian-hua. Pyroshock environment of missiles and launch vehicles[J]. Missiles and Space Vehicles, 2005, 3: 30-36.
[6] 郭勤涛, 张令弥. 以冲击响应谱为响应特征的有限元模型确认[J]. 振动与冲击, 2005, 24(6): 32-36.
GUO Qin-tao, ZHANG Ling-mi. FE model validation using shock response spectrum as response feature[J]. Journal of Vibration and Shock, 2005, 24(6): 32-36.
[7] 卢来洁, 马爱军, 冯雪梅. 冲击响应谱试验规范述评[J]. 振动与冲击, 2002, 21(2): 18-20.
LU Lai-jie, MA Ai-jun, FENG Xue-mei. A review of shock response spectrum test standard[J]. Journal of Vibration and Shock, 2002, 21(2): 18-20.
[8] 刘继承, 黄光萍. 冲击响应谱试验参数的设置[J]. 现代雷达, 2010, 32(2): 91-94.
LIU Ji-cheng, HUANG Guang-ping. Test parameters setup of shock response spectrum[J]. Modem Radar, 2010, 32(2): 91-94.
[9] 李锋, 邓长华, 鲍福廷. 液体火箭发动机冲击响应谱分析计算方法[J]. 西安工业大学学报, 2009, 29(1): 28-31.
LI Feng, DENG Chang-hua, BAO Fu-ting. Analysis of shock response spectrum for liquid rocket engines[J]. Journal of Xi’an Technological University, 2009, 29(1): 28-31.
[10] Smallwood D O. Improved recursive formula for calculating shock response spectra[J]. Shock and Vibration Bulletin, 1980, 51(2): 211-217.
[11] R.Barboni, G.Galluccio, L.Collini, et al. On the use of fem for pyro-shock propagation in space structures[C]. 53rd International Astronautical congress, 10-19 oct 2002, Houston, USA.
PDF(2312 KB)

559

Accesses

0

Citation

Detail

Sections
Recommended

/