Modified Generalized Inverse Beamforming Based on High-order Matrix Function

Chen Si 1 Zhang Zhi-fei 1 Xu Zhong-ming 1 He Yan-song 1 Li Shu 1

Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (10) : 98-103.

PDF(1238 KB)
PDF(1238 KB)
Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (10) : 98-103.

Modified Generalized Inverse Beamforming Based on High-order Matrix Function

  • Chen Si 1   Zhang Zhi-fei 1  Xu Zhong-ming 1  He Yan-song 1  Li Shu 1
Author information +
History +

Abstract

Generalized inverse beamforming is an effective sound source locating method. But its calculation robustness is sensitive to random noises. For the sake of improving the robustness of generalized inverse beamforming, a modified algorithm based on high-order matrix function is proposed. The regularization matrix is defined based on generalized inverse beamforming and used in iteratively resolving beamforming output. At the same time, the high-order matrix function is incorporated into the cross spectra of beamforming output to optimize the effect of sound source localization. Moreover, to find the optimum range of matrix function order, the numerical simulation is implemented and the influence of sound source frequency on value selection of matrix function order is analyzed correspondingly. Finally, the identifications of both monopole and coherent sound sources are realized numerically and experimentally. The results show that the proposed modified algorithm can identify the source position with higher space resolution and less side-lobe. 
 

Key words

microphones array / sound source identification / generalized inverse beamforming / high order matrix function

Cite this article

Download Citations
Chen Si 1 Zhang Zhi-fei 1 Xu Zhong-ming 1 He Yan-song 1 Li Shu 1 . Modified Generalized Inverse Beamforming Based on High-order Matrix Function[J]. Journal of Vibration and Shock, 2017, 36(10): 98-103

References

[1]  李兵,杨殿阁,邵林,等.基于波束形成和双目视觉的行驶汽车噪声源识别[J].汽车工程, 2008, 30(10): 889- 892.
 LI Bing, YANG Dian-Ge, SHAO Lin, et al. Noise sources measurement and identification for moving automobiles [J]. Automotive Engineering, 2008, 30(10):889-892.
[2] J.J Christensen,J. Hald. Beamforming. B&K Technical Review 1.2004:1-31.
[3] Yong Thung Cho,Michael J. Roan. Adaptive near-field beamforming techniques for sound source imaging [J]. J. Acoust. Soc. Am, 2009, 125(2):944-957.
[4]  杨洋,褚志刚,江洪,等.反卷积DAMAS2 波束形成声源识别研究[J].仪器仪表学报, 2013, 34(8): 1779-1786.
    YANG Yang, CHU Zhi-Gang, JIANG Hong, et al. Research on DAMAS2 beamforming sound source identification[J].  Chinese Journal of Scientific Instrument, 2013, 34(8):1779-1786.
[5]  Thomas F. Brooks, William M. Humphreys. A deconvolution approach for the mapping of acoustic sources (DAMAS) determined from phased microphone arrays [J]. Journal of Sound and Vibration, 2006, 294(4-5): 856-879.
[6]  T. Suzuki. L1 generalized inverse beamforming algorithm resolving coherent/incoherent, distributed and multipole sources [J]. Journal of Sound and Vibration, 2011, 330(24): 5835-5851.
[7]  徐中明,黎术,贺岩松,等. 光滑L0范数广义逆波束形成[J].仪器仪表学报, 2014, 35(6):1276-1281.
XU Zhong-Ming, LI Shu, HE Yan-Song, et al. Smoothed L0 norm generalized inverse beamforming [J].  Chinese Journal of Scientific Instrument, 2014, 35(6): 1276-1281.
[8]  J. Peng, J. Hampton, A. Doostan. A weighted L1 minimization approach for sparse polynomial chaos expansions[J]. Journal of Computational Physics, 2014, 267(15): 92-111.
[9]  R. A. El-Attar, M. Vidyasagar, S. R. K. Dutta. Algorithm For L1-norm minimization with application to nonlinear L1-approximation [J]. Society for Industrial and Applied Mathematics, 1979, 16(1):70-86.
[10]  D. Calvettia, S. Morigib, L. Reichelc,et al. Tikhonov regularization and the L-curve for large discrete ill-posed problems [J]. Journal of Computational and Applied Mathematics, 2000, 123(1): 423-446.
[11]  Zou H, Hastie T. Regularization and variable selection via the elastic net [J]. Journal of the royal statistical society series b-statistical methodology, 2005, 67(2):301-320.
[12] P.A. Nelson, S.H. Yoon. Estimation of acoustic source strength by inverse methods: part I, conditioning of the inverse problem [J]. Journal of Sound and vibration ,2000, 233(4): 643-668.
[13] Takao Suzuki. L1 generalized inverse beam-forming algorithm resolving coherent/incoherent, distributed and multipole sources [J]. Journal of sound and vibration, 2011, 330 (24): 5835-5851.
[14] 郝燕玲,成怡,孙枫,等. Tikhonov正则化向下延拓算法仿真实验研究[J]. 仪器仪表学报, 2008, 29 (3): 605- 609.
HE Yanling, CHENG Yi, SUN Feng, et al. Simulation research on Tikhonov regularation algorithm in downward continuation[J].  Chinese Journal of Scientific Instrument, 2008, 29(3):605-609.
[15] 王薇,韩波,唐锦萍. 地震波形反演的稀疏约束正则化方法[J]. 地球物理学报, 2013, 56(1):289-297.
WANG Wei,HAN Bo,TANG Jinpin. ReguIarization method with sparsity constraints for seismic waveform inversion[J].  Chinese Journal of Geophysics, 2013, 56 (1):289-297.
[16] T. Padois, P.A. Gauthier, A. Berry. Inverse problem with beamforming regularization matrix applied to sound source localization in closed wind-tunnel using microphone array [J]. Journal of sound and vibration 2014, 333 (25): 6858-6868.
[17] P.A. Gauthier, C. Camier, Y. Pasco, et al. Beamforming regularization matrix and inverse problems applied to sound field measurement and extrapolation using microphone array[J]. Journal of Sound and Vibration, 2011, 330(24): 5852–5877.
[18]  R.P. Dougherty. Functional beamforming[C]. The 5th Berlin beamforming conference (BeBeC)2014, Berlin, 2014, Paper BeBeC-2014-1.
[19] R. P. Dougherty. Functional beamforming for aero-acoustic source distributions[C]. The 20th AIAA aeroacoustics conference2014, Georgia, 2014, AIAA-2014-3066.
PDF(1238 KB)

545

Accesses

0

Citation

Detail

Sections
Recommended

/