Research on dimensionless parameter model of  piezoelectric–electromagnetic hybrid vibration energy harvester

XIA Hua-kang 1 CHEN Ren-wen 1 ZHU Li-ya 2 REN Long 1 ZHOU Qin-bang 1

Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (12) : 128-133.

PDF(1400 KB)
PDF(1400 KB)
Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (12) : 128-133.

Research on dimensionless parameter model of  piezoelectric–electromagnetic hybrid vibration energy harvester

  • XIA Hua-kang 1   CHEN Ren-wen 1   ZHU Li-ya 2   REN Long 1   ZHOU Qin-bang 1
Author information +
History +

Abstract

In order to establish a unified performance comparison standard and obtain the maximum output power and the corresponding optimal loads for a piezoelectric–electromagnetic hybrid vibration energy harvester, a generalized dimensionless parameter model is introduced to address this problem. The expression of the theoretical normalized output power is derived, and the maximum value and the optimal loads are obtained based on genetic algorithm; the relations between the dimensionless parameters and the performance of the harvester are analyzed by numerical simulations, and the feasibility of the model and genetic algorithm for this topic are confirmed by the experiment. The results show: (1) reducing coil resistance can improve the performance; (2) improving mechanical quality factor can increase the frequency-selective; (3) the performance is co-determined by piezoelectric and electromagnetic when the two effects are weak coupling, and the best performance is obtained at their matching point; (4) the performance is almost determined by electromagnetic when it is strong coupling, and it increases to the ultimate performance with the increase of electromagnetic effect; (5) the optimal load range is increased by using the piezoelectric–electromagnetic dual-coupling mechanisms.

Key words

energy harvesting / piezoelectric-electromagnetic / dimensionless parameter model / genetic algorithm

Cite this article

Download Citations
XIA Hua-kang 1 CHEN Ren-wen 1 ZHU Li-ya 2 REN Long 1 ZHOU Qin-bang 1. Research on dimensionless parameter model of  piezoelectric–electromagnetic hybrid vibration energy harvester[J]. Journal of Vibration and Shock, 2017, 36(12): 128-133

References

[1] Poulin G, Sarraute E, Costa F. Generation of electrical energy for portable devices: Comparative study of an electromagnetic and a piezoelectric system[J]. Sensors and Actuators A: Physical, 2004,116(3):461-471.
[2] Challa V R, Prasad M G, Fisher F T. A coupled piezoelectric–electromagnetic energy harvesting technique for achieving increased power output through damping matching[J]. Smart materials and Structures, 2009, 18(9): 095029.
[3] Shan X B, Xu Z L, Song R J, et al. A New Mathematical Model for a Piezoelectric-Electromagnetic Hybrid Energy Harvester[J]. Ferroelectrics, 2013,450(1):57-65.
[4] Wang H Y, Tang L H, Guo Y, et al. A 2DOF hybrid energy harvester based on combined piezoelectric and electromagnetic conversion mechanisms[J]. A Journal of Zhejiang University SCIENCE A, 2014,15(9):711-722.
[5] Li P, Gao S Q, Niu S H, et al. An analysis of the coupling effect for a hybrid piezoelectric and electromagnetic energy harvester[J]. Smart Materials and Structures, 2014,23(6): 065016.
[6] 蔡华通,高世桥,李平,王华敏. 压电-电磁复合式俘能器的设计与实验研究[J]. 压电与声光, 2015,37(2):248-253.
CAI Hua-tong, GAO Shi-qiao; LI Ping, et al. Design and experimental study of hybrid piezoelectric and electromagnetic harvester[J]. Piezoelectrics and Acoustooptics, 2015, 37(2): 248-253.
[7] Williams C B, Shearwood C, Harradine M A, et al. Development of an electromagnetic micro-generator[C] Circuits, Devices and Systems, IEE Proceedings-. IET, 2001, 148(6): 337-342.
[8] Guyomar D, Badel A, Lefeuvre E, et al. Toward energy harvesting using active materials and conversion improvement by nonlinear processing[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2005,52(4):584-595.
[9] Wang X, Lin L. Dimensionless optimization of piezoelectric vibration energy harvesters with different interface circuits[J]. Smart Materials and Structures, 2013, 22(8): 085011.
[10] John Henry Holland. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence[M]. MIT press, 1992.
PDF(1400 KB)

388

Accesses

0

Citation

Detail

Sections
Recommended

/