Chaotic simulated PSO algorithm application research for Weibull distribution parameter estimation

XU Wei,CHENG Gang,HUANG Lin,WEI Xiu Lei,WENG Lei

Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (12) : 134-139.

PDF(1119 KB)
PDF(1119 KB)
Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (12) : 134-139.

Chaotic simulated PSO algorithm application research for Weibull distribution parameter estimation

  • XU Wei,CHENG Gang,HUANG Lin,WEI Xiu Lei,WENG Lei
Author information +
History +

Abstract

Aiming at the deficiency of three parameter Weibull distribution model in directly solving by means of accurate solution, the parameter estimation based on chaotic simulated annealing particle swarm optimization algorithm is proposed, and the Logistic chaos factor is introduced to adjust the update strategy of particle swarm optimization algorithm so as to fully release its ergodic search ability. The simulated annealing method is used to accept the new state with a certain probability according to the acceptance criteria of Tsallis, so that the algorithm can avoid premature convergence and realize the global optimal search. At the same time, in order to reduce the time of iterative calculation, the initial solution obtained by the graphic method is used to provide the search scope. The method is applied to the reliable Weibull distribution parameter estimation of bearing rotor. Experimental results show that the method is feasible and effective and has better optimization performance compared with genetic algorithm and simulated particle swarm optimization algorithm.

Key words

Chaos / Simulated Annealing / PSO / Weibull distribution / Parameter estimation

Cite this article

Download Citations
XU Wei,CHENG Gang,HUANG Lin,WEI Xiu Lei,WENG Lei. Chaotic simulated PSO algorithm application research for Weibull distribution parameter estimation[J]. Journal of Vibration and Shock, 2017, 36(12): 134-139

References

[1] Shimizua S. P-S-N/P-F-L curve approach using three-parameter Weibull distribution for life and fatigue analysis of structural and rolling contact components [J]. Tribology Transactions, 2005, 48(4): 576-582.
[2] Ling D. Research on Weibull Distribution and Its Applications in Mechanical Reliability Engineering [D].Chengdu: University of electronic science and technology, 2010.
凌丹.威布尔分布模型及其在机械可靠性中的应用研究 [D]. 成都: 电子科技大学, 2010.
[3] Zhang L F, Xie M, Tangga L C. A study of two estimation approaches for parameters of Weibull distribution based on WPP [J]. Reliability Engineering & System Safety,2007, 92(3):360-368.
[4] Touw A E. Bayesian estimation of mixed Weibull distributions[J]. Reliability Engineering & System Safety, 2009, 94(2): 463-473.
[5] Dong S, Han Y, Tao S S, et al. Parameters Estimation for Weibull Distribution with Particle Swarm Optimization[J].Ocean University of China, 2012, 42(6): 120-125.
董胜,韩意,陶山山,等. Weibull分布参数的粒子群算法估计[J]. 中国海洋大学学报, 2012, 42(6): 120-125.
[6] Yang Z Z, Liu R Y. Improved Methods of the Parameter Estimating of Three-parameter Weibull Distribution[J]. Journal of engineering mathematics, 2004, 21(2): 281-284.
杨志忠,刘瑞元. 三参数Weibull分布参数估计求法改[J]. 工程数学学报, 2004, 21(2): 281-284.
[7] Yang M C, Nie H. Advanced Algorithm for Maximum Likelihood Estimation of Three Parameter Weibull Distribution[J]. Journal of Nanjing University of Aeronautics & Astronautics,2007, 39(1): 22-24.
杨谋存,聂宏. 三参数Weibull分布参数的极大似然估计数值解法[J]. 南京航空航天大学学报,2007, 39(1): 22-24.
[8] Pan X C. Low-order probability-weighted moments method for wind speed probability distribution parameter estimation[J]. Proceeding of the CSEE, 2012, 32(5): 132-136.
潘晓春. 风速概率分布参数估计的低阶概率权重矩法[J]. 中国电机工程学报, 2012, 32(5): 132-136.
[9] Clerc M. Discrete particle swarm optimization illustrated by the traveling salesman problem [M].Heidelberg:Springer,2004:200-223.
[10] Liang J J, Cai Q, Chu Z L. Bayesian network structure learning algorithm using particle swarm optimization[J].Huazhong Univ. of Sci & Tech(Natural science edition), 2012, 40(12): 44-48.
梁洁,蔡琦,初珠立. 基于微粒群优化的贝叶斯网络结构学习方法[J]. 华中科技大学学报(自然科学版), 2012, 40(12): 44-48.
[11] Luo H, Wang H J, Huang J G et al. Method of united estimation to the parameter of three-parameter Weibull distribution based on PSO[J]. Chinese Journal of scientific Instrument, 2009, 30(8): 1605-1612.
罗航,王后军,黄建国,等. 基于PSO的三参数威布尔分布参数的联合估计方法[J]. 仪器仪表学报, 2009, 30(8): 1605-1612.
[12] Wang Q, Wang L, Ren W J. Research on estimating parameters of Weibull distribution Model Based on FPSO-SA[J].Journal of Jilin University(Information science Edition) , 2014, 32(5): 476-483.
王琼,王磊,任伟建.基于FPSO-SA算法的威布尔分布参数估计研究[J]. 吉林大学学报(信息科学版), 2014, 32(5): 476-483.
[13] Liu A J, Yang Y, Li P. Chaotic simulated annealing particle swarm optimization algorithm research and its application[J]. Journal of Zhejiang University(Engineering Science) , 2013, 47(10),: 1722-1730.
刘爱军,杨育,李斐. 混沌模拟退火粒子群优化算法研究及应用[J]. 浙江大学学报(工学版), 2013, 47(10),: 1722-1730.
[14] Huang P. Improved Particle Swarm algorithm and its application in power system[D]. Guang Zhou:South China University of Technology,2012.
黄平.粒子群算法改进及其在电力系统的应用[D].广州:华南理工大学, 2012.
[15] Pang F. The Principle of SA Algorithm and Algorithm,s Application on Optimization Problem[D]. Chang Chun: Ji Lin University,2006.
庞峰. 模拟退火算法的原理及算法在优化问题上的应用[D]. 长春:吉林大学,2006.
[16]  郑锐.三参数威布尔分布参数估计及在可靠性分析中的应用[J].振动与冲击,2015,34(5):78-81.
ZHENG Rui.Parameter estimation of three-parameter Weibull distribution and its application in reliability analysis[J].Journal of Vibration and Shock,2015,34(5):78-81.
[17] Nelson E W. Applied Life Data Analysis [M].New York,1982.
PDF(1119 KB)

404

Accesses

0

Citation

Detail

Sections
Recommended

/