Analysis and control of noise reduction in small household refrigerators based on suppression of refrigerant flow

LIU Yong-hui1,2LIU Yi-Cai3YIN Feng-fu4WANG Xiao-xin4LIU Hua2DING Guo-liang1

Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (15) : 152-157.

PDF(2407 KB)
PDF(2407 KB)
Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (15) : 152-157.

Analysis and control of noise reduction in small household refrigerators based on suppression of refrigerant flow

  • LIU Yong-hui1,2LIU Yi-Cai3YIN Feng-fu4WANG Xiao-xin4LIU Hua2DING Guo-liang1
Author information +
History +

Abstract

The refrigerant flow noise especially the jet noise at the capillary outlet is one of the main factors which affect the noise quality in small household refrigerators. However, the noise caused by the mismatch between components of refrigeration system does not attract enough research interest due to its theoretical difficulty and strong self-hiding. In this paper, firstly a theoretical research on the refrigerant flow noise is conducted based on both the refrigerant flow characteristics theory and CFD one by taking a household freezer as an example, which aims to determine the mechanism of popping noise and to control the noise of refrigerant flowing in the pipes. Then an improved structure of the transition pipe between the capillary outlet and the evaporator is proposed based on the theoretical results. Finally the experimental test has shown that this improvement can effectively suppress the jet noise at the freezer capillary outlet and reduce the overall noise level by about 3dB(A).The research results enrich the theory of the jet-noise suppression and can provide important reference for the design of a new muffler to improve the noise quality in small household refrigerators.

Key words

  / Small household refrigerator, flow noise, CFD, capillary, experimental study

Cite this article

Download Citations
LIU Yong-hui1,2LIU Yi-Cai3YIN Feng-fu4WANG Xiao-xin4LIU Hua2DING Guo-liang1. Analysis and control of noise reduction in small household refrigerators based on suppression of refrigerant flow[J]. Journal of Vibration and Shock, 2017, 36(15): 152-157

References

[1]李海渊. 移频降噪理论在往复式冰箱压缩机噪声控制中的应用[J]. 上海理工大学学报, 2004, 26(6): 545-548.
LI Haiyuan. Using of CFRN in noise reduction for a reciprocating refrigerator compressor. Journal of University of Shanghai for Science and Technology [J], 2004, 26(6): 545-548.
[2]韩海晓,何志龙,彭强强. 全封闭冰箱压缩机噪声控制研究综述[J]. 流体机械, 2012, 40(1): 35-40.
HAN Haixiao, HE Zhilong, PENG Qiangqiang. Review of the Noise Control of Hermetic Refrigerator Compressor[J].Fluid Machinery, 2012, 40(1): 35-40.
[3] 郭维, 刘斌, 冯涛, 等. 冰箱压缩机机壳实验模态分析[J]. 噪声与振动控制, 2010, (3): 67-70.
GUO Wei, LIU Bin, FENG Tao, et al. Experimental Modal Analysis of a Refrigeration Compressor Shell[J].Noise and Vibration Control, 2010, (3): 67-70.
[4] 陈建良, 金涛, 孟晓宏, 等. 冰箱压缩机壳体噪声辐射数值分析[J]. 浙江大学学报(工学版), 2007, 41(5): 794-798.
CHEN Jianliang,JIN Tao,MENG Xiaohong, et al. Numerical analysis of noise radiation from refrigerator compressor shell[J].Journal of Zhejiang University(Engineering Science), 2007, 41(5): 794-798.
[5] 姜国清, 陈雍乐. 冰箱压缩机噪声分析及降噪措施的研究[J]. 重庆大学学报(自然科学版), 1995, 18(2): 74-80.
JIANG Guoqing, CHEN Yangle. On the Noise Analysing and Reducing for Refrigeratory compressors[J].Journal of Chongqing University (Natural Science Edition),1995, 18(2): 74-80.
[6]冯涛,刘克,周启君,冰箱冷媒流动噪声的实验研究[J]. 家电科技, 1995 (4): 42-46.
FENG Tao,LIU Ke,ZHOU Qijun. Experimental investigation on refrigerants flow noise in the refrigerator[J].Appliance Technology, 1995 (4): 42-46.
[7] 张奎, 朱小兵, 林江波,等. 用于冰箱压缩机管路减振的动力吸振器设计[J]. 电器, 2013, (S1):721-726.
ZHANG Kui,ZHU Xiaobing,LIN Jiangbo, et al. The Design of Dynamic Absorber to Decrease the Vibration of Refrigerator Compressor Pipe [J].China Appliance, 2013, (S1):721-726.
[8] 徐建文, 李艳春.电冰箱中频匹配噪声分析与研究[J]. 家电科技, 2008, (16): 35-37.
XU Jianwen,LI Yanchun. Analysis and Research on the noise of the refrigerator[J]. Appliance Technology, 2008, (16): 35-37.
[9] 鄢志国. 直冷式电冰箱的超静音技术[J]. 家用电器科技, 2000, (12): 58-59.
YAN Zhiguo, Ultra quiet technology of direct cooling refrigerator[J]. Science and Technology of Household Electric Appliance, 2000, (12): 58-59.
[10] 王超, 王来华. 冰箱中制冷剂流动噪声的分析与控制[J]. 制冷学报, 1990, (4): 13-18.
WANG Chao WANG Laihua. Analysis and Control of the Refrigerant Flow Noise in Household Refrigerator[J]. Journal of Refrigeration, 1990, (4): 13-18.
[11] 杨智辉, 刘益才, 刘振利,等. 冰箱毛细管流动噪声的实验研究. 制冷与空调(北京),2006, (4): 74-76.
YANG Zhihui, LIU Yicai, LIU Zhenli, et al. Experimental study on the flow noise of capillary tube in the refrigerator[J].Refrigeration and Air-Conditioning. 2006, (4): 74-76.
[12] 张少华, 周建军, 章爱新. 应用声学理论降低冰箱气流噪声的方法[J]. 电器,2012, (S1):174-177.
ZHANG Shaohua, ZHOU Jianjun, ZHANG Aixin .A Method About Application of Acoustics Theory to Reduce Refrigerator's Airstream Noise. China Appliance,2012, (S1):174-177.
[13] 丁国良,欧阳华,李鸿光.制冷空调装置数字化设计[M].北京:中国建筑工业出版社,2008. 60-64.
DING Guoliang, OU Yanghua, LI Hongguang. Digital design of refrigeration and air conditioning unit[M].Beijing: China Building Industry Press, 2008. 60-64.
[14] 刘益才, 杨智辉,郭方中.冰箱回热毛细管计算模型[J]. 华中科技大学学报,2007, 35(3):96-99
LIU Yicai, YANG Zhihui, GUO Fangzhong. Calculation model for refrigerant capillary tubes in refrigerators[J].Journal of Huazhong University of Science and Technology(Nature Science Edition),2007, 35(3):96-99
[15] 王福军.计算流体动力学分析[M]. 北京:清华大学出版社,2004.
WANG Fujun. Computational Fluid Dynamics Analysis[M].Beijing: Publishing House of Tsinghua University, 2004
[16] 赵晓宇,韩礼钟,朱明善.冰箱系统毛细管计算模型[J].工程热物理学报, 1995, 16(2): 145-148
ZHAO Xiaoyu, HAN Lizhong, ZHU Mingshan. Capillary Calculation Model of Refrigerator System[J].Journal of Engineering Thermophysics,1995, 16(2): 145-148.
[17] 丁国良,张春路,李灏,等.毛细管的通用积分模型[J].工程热物理学报, 1999, 20(2): 216-219
DING Guoliang, ZHANG Chunlu, LI Hao, et al. General Integral Model of Capillary Tubes [J]. Journal of Engineering Thermophysics,1999, 20(2): 216-219
[18] 苏许辉. 非绝热毛细管的数值计算和特性分析[J]. 低温工程, 2004, (4): 37-40
SU Xuhui. Numerical Calculation and Characteristic analysis of Refreigerant Flow Through Non-adiabatic Capillary Tubes[J].Cryogenics. 2004, (4): 37-40
[19] Bansal P K, Wang G. Reverse heat transfer and re-condensation phenomena in non-adiabatic capillary tubes[J]. Applied Thermal Engineering, 2005, (25):3187-3202
[20] GB/T 4214.1-2000. 声学—家用电器及类似用途器具噪声测试方法(第1部分:通用要求)[S]. 北京:中国标准出版社,2000.
GB/T 4214.1-2000.Acoustics-Household and similar electrical appliances-Test code for determination of airborne acoustical noise(Part 1:General requirements)[S]. Beijing: China Standard Press, 2000.
PDF(2407 KB)

424

Accesses

0

Citation

Detail

Sections
Recommended

/