AN EFFICIENT PRECISE TNTEGRATION SINGLE-STEP METHOD FOR NONLINEAR DYNAMIC ANALYSIS

WANG Hai-bo,CHEN Jin,LI Shaoyi

Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (15) : 158-162.

PDF(661 KB)
PDF(661 KB)
Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (15) : 158-162.

AN EFFICIENT PRECISE TNTEGRATION SINGLE-STEP METHOD FOR NONLINEAR DYNAMIC ANALYSIS

  • WANG Hai-bo1,CHEN Jin2,LI Shaoyi
Author information +
History +

Abstract

For the state equation  used for nonlinear dynamics system, an efficient precise integration single-step method is proposed with the combination of the precise integration method and Romberg numerical integration. In the process of computation, the state matrix inversion is avoided and vk is used to estimate the unknown vk+j/m(j=1,2,…m) by the two-order Runge-Kutta method. The algorithm has an uniform computing scheme, which makes programming more simple. Moreover, it applies to diverse computations for different accuracies by controlling the value of m. Compared with two single-step methods, one predict-correct method or the predictor-corrector symplectic time-subdomain algorithm, the numerical results show that the proposed method is more highly accurate and effcient, capable of keeping computation stability. The efficient precise integration single-step method is more advantageous to computate MDOF, strongly nonlinear dynamic responses.

Key words

nonlinear dynamic equations / precise integration method / Romberg numerical integration / Runge-Kutta method / single-step method

Cite this article

Download Citations
WANG Hai-bo,CHEN Jin,LI Shaoyi. AN EFFICIENT PRECISE TNTEGRATION SINGLE-STEP METHOD FOR NONLINEAR DYNAMIC ANALYSIS[J]. Journal of Vibration and Shock, 2017, 36(15): 158-162

References

[1] 钟万勰. 结构动力方程的精细时程积分法[J]. 大连理工大学学报, 1994, 34(2): 131-136.
   Zhong Wanxie. On precise time-integration method for structural dynamics [J]. Journal of Dalian University of Technology, 1994, 34(2): 131-136. (in Chinese)
[2] Jiahao Lin, Weiping Shen,Williams F W. A high precision direct integration scheme for structures subjected to transient dynamic loading [J]. Computer & Structures, 1995, 6(1): 120-130.
[3] 赵秋玲. 非线性动力学方程的精细积分法[J]. 力学与实践, 1998, 20(6): 24-26.
   Zhao Qiuling. An accurate integration method for solving nonlinear dynamic problems[J]. Mechanics in Engineering, 1998, 20(6):24-26. (in Chinese)
[4] 吕和祥,蔡志勤,裘春航. 非线性动力问题的一个显式精细积分算法[J]. 应用力学学报, 2001, 18(2): 34-40.
   Lu Hexiang,Cai Zhiqin,Qiu Chunhang. An explicit precise integration algorithm for nonlinear dynamics problems[J]. Chinese Journal of Applied Mechanics, 2001, 18(2): 34-40. (in Chinese)
[5] 张洵安,姜节胜. 结构非线性动力方程的精细积分算法[J]. 应用力学学报, 2000, 17(4): 164-168.
   Zhang Xunan,Jiang Jiesheng. The precise integration algorithm for nonlinear dynamics equations of structures[J]. Chinese Journal of Applied Mechanics, 2000, 17(4): 164-168. (in Chinese)
[6] 裘春航,吕和祥,钟万勰. 求解非线性动力学方程的分段直接积分法[J]. 力学学报, 2002, 34(3): 369-378.
   Qiu Chunhang,Lu Hexiang,Zhong Wanxie. On segmented-direct-integration method for nonlinear dynamics equations[J]. Acta Mechanica Sinica, 2002, 34(3): 369-378. (in Chinese)
[7] 张素英,邓子辰. 非线性动力方程的增维精细积分法[J]. 计算力学学报, 2003, 20(4): 423-426.
   Zhang Suying,Deng Zichen. Incremental-dimensional precise integration method for nonlinear dynamic equation[J]. Chinese Journal of Computational Mechanics, 2003, 20(4): 423-426. (in Chinese)
[8] 葛根,王洪礼,谭建国. 多自由度非线性动力方程的改进增维精细积分法[J]. 天津大学学报, 2009, 42(2): 113-117.
   Ge Gen,Wang Hongli,Tan Jianguo. Improved increment-dimensional precise integration method for the nonlinear dynamic equation with multi-degree-of-freedom[J]. Journal of Tianjin University, 2009, 42(2): 113-117. (in Chinese)
[9] 李金桥,于建华. 非线性动力方程避免状态矩阵求逆的级数解[J]. 四川大学学报(工程科学版), 2004, 36(4): 26-30.
   Li Jinqiao,Yu Jianhua. Series solution of nonlinear dynamics equations avoiding calculating the inversion of the state matrix[J]. Journal of Sichuan University(Engineering Science Edition), 2004, 36(4): 26-30. (in Chinese)
[10] 任传波,贺光宗,李忠芳. 结构动力学精细积分的一种高精度通用计算格式[J]. 机械科学与技术, 2005, 24(12): 1507-1509.
    Ren Chuanbo,He Guangzong,Li Zhongfang. A high precision and general computational scheme in precise integration of structural dynamics[J]. Mechanical Science and Technology, 2005, 24(12): 1507-1509.(in Chinese)
[11] 向宇,黄玉盈,袁丽芸,等. 非线性系统控制方程的齐次扩容精细积分法[J]. 振动与冲击, 2007, 26(12): 40-44.
    Xiang Yu,Huang Yuying,Yuan Liyun,et al. Extended homogeneous capacity high precision integration method for control equation of nonlinear systems[J]. Journal of Vibration and Shock, 2007, 26(12): 40-44. (in Chinese)
[12] 王海波,余志武,陈伯望. 非线性动力分析避免状态矩阵求逆的精细积分多步法[J]. 振动与冲击, 2008, 27(4): 105-108.
    Wang Haibo,Yu Zhiwu,Chen Bowang. Precise integration multi-step method for nonlinear dynamic equations to avoid calculating inverse of state matrix[J]. Journal of Vibration and Shock, 2008, 27(4): 105-108. (in Chinese)
[13] 谭述君,高强,钟万勰. Duhamel项的精细积分方法在非线性微分方程数值求解中的应用[J]. 计算力学学报, 2010, 27 (5): 752-758.
    Tan Shujun,Gao Qiang,Zhong Wanxie. Applications of Duhamel term’s precise integration method in solving nonlinear differential equtions[J]. Chinese Journal of Computational Mechanics, 2010,27(5):752-758.(in Chinese)
[14] 江小燕,王建国. 非线性动力方程的精细时空有限元方法[J]. 工程力学, 2014, 31(1): 23-28.
    Jiang Xiaoyan,Wang Jianguo. The precise space-time finite element method for nonlinear dynamic equation[J]. Engineering Mechanics, 2014, 31(1): 23-28. (in Chinese)
[15] 李炜华,王堉,罗恩. 求解非线性结构动力方程的预估校正—辛时间子域法[J]. 计算力学学报, 2014, 31(4): 453-458.
    Li Weihua,Wang Yu,Luo En. Predictor-corrector symplectic time-subdomain algorithm for nonlinear dynamic equations[J]. Chinese Journal of Computational Mechanics, 2014, 31(4): 453-458. (in Chinese)
PDF(661 KB)

Accesses

Citation

Detail

Sections
Recommended

/