Analysis of vibration-acoustic coupling in cabin using a low dispersion meshless method

Wang Hai-tao, Zeng Xiang-yang, Du Bo-kai, Chen Ke-an

Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (18) : 105-111.

PDF(982 KB)
PDF(982 KB)
Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (18) : 105-111.

Analysis of vibration-acoustic coupling in cabin using a low dispersion meshless method

  • Wang Hai-tao, Zeng Xiang-yang, Du Bo-kai, Chen Ke-an
Author information +
History +

Abstract

 Analyzing the acoustic-structural coupling in airplane cabin is an important problem in noise control and acoustic design. The wave-based methods, such as Finite Element Method and classical meshless method, are commonly used in simulations of the acoustic-structural coupling in cabins. However, these methods usually suffer the dispersion, which reduces the accuracy in mid-frequency range. For this problem, a low dispersion meshless model is developed. The model is capable of reducing the distortion of the stiffness matrix. Firstly, the model of acoustic-structural coupling under hybrid exciting source is derived. Then, a smoothing technique for sound pressure gradient is developed based on the supporting domain of meshless method. The technique can reduce the stiffness of the matrix. Lastly, the new stiffness matrix is reconstructed by combining the ones obtained using the classical meshless method and smoothing technique. The low dispersion meshless model is used to simulate the acoustic-structural couplings of a rectangular enclosure and a practical cabin structure. The results are compared with those obtained using finite element method, classical method and measurement. The comparisons demonstrated that the low dispersion meshless model has higher accuracy on simulating the system stiffness and gives closer results with real solutions in mid-frequency range.

Cite this article

Download Citations
Wang Hai-tao, Zeng Xiang-yang, Du Bo-kai, Chen Ke-an. Analysis of vibration-acoustic coupling in cabin using a low dispersion meshless method[J]. Journal of Vibration and Shock, 2017, 36(18): 105-111

References

[1] Dowell E H, Voss H M. The effect of cavity on panel vibration[J]. AIAA Journal, 1963, 1: 467-477.
[2] Gladwell G M L, Zimmermann G. On energy and complementary energy formulations of acoustic and structural vibration problems[J]. J. Sound Vib., 1966, 3(3): 233-241.
[3] Craggs A. The transient response of a coupled plate acoustic system using plate and acoustic finite elements[J]. J. Sound Vib., 1971, 15: 509-528.
[4] 邱小军, 沙家正. 低频无规入射声场通过矩形板入射到闭空间的隔声量-I.理论部分[J]. 声学学报, 1995, 20(3): 174-182.
Qiu X J, Sha J Z. Transmission loss of a rectangular panel into a rectangular enclosure in a low frequency random incidence sound field-I. Theoretical part[J]. Acta Acustica, 1995, 20(3): 174-182.
[5] 邱小军, 沙家正. 低频无规入射声场通过矩形板入射到闭空间的隔声量-II.实验部分[J]. 声学学报, 1996, 21(5): 838-843.
Qiu X J, Sha J Z. Transmission loss of a rectangular panel into a rectangular enclosure in a low frequency random incidence sound field-II. Experimental part[J]. Acta Acustica, 1996, 21(5): 838-843.
[6] 罗超, 饶柱石, 赵玫. 基于格林函数法的封闭声腔的结构-声耦合分析[J]. 振动工程学报, 2004, 17(3): 296-300.
Luo C, Rao Z S, Zhao M. Analysis of structural-acoustic coupling of an enclosure using Green function method[J]. Journal of Vibrition Engineering, 2004, 17(3): 296-300.
[7] 姚昊萍, 张建润, 陈南, et al. 不同边界条件下的封闭矩形声腔的结构-声耦合分析[J]. 声学学报, 2007, 32(6): 497-502.
Yao H P, Zhang J R, Chen N, et al. Analysis of structural-acoustic coupling of elastic rectangular enclosure with arbitrary boundary conditions[J]. Acta Acustica, 2007, 32(6): 497-502.
[8] 靳国永, 杨铁军, 刘志刚, et al. 弹性板结构封闭声腔的结构-声耦合特性分析[J]. 声学学报, 2007, 32(2): 178-188.
Jin G Y, Yang T J, Liu Z G, et al. Analysis of structural-acoustic coupling of an enclosure surrounded by flexible panel[J]. Acta Acustica, 2007, 32(2): 178-188.
[9] Deraemaeker A, Babuska I, Bouillard P. Dispersion and pullution of the FEM solution for the Helmholtz equation in one, two and three dimensions[J]. Int. J Numer. Meth. Eng., 1999, 46: 471-499.
[10] Bouillard P, Ihlenburg F. Error estimation and adaptivity for the finite element method in acoustics: 2D and 3D applications [J]. Comput. Methods Appl. Engrg., 1999, 176: 147-163.
[11] Liu G R, Nguyen-Thoi T, Nguyen-Xuan H, et al. A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems[J]. Computer & Structures, 2009, 87: 14-26.
[12] 何智成, 李光耀, 成艾国, et al. 基于边光滑有限元的振声耦合研究[J]. 机械工程学报, 2014, 50(4): 113-119.
He Z C, Li G Y, Cheng A G, et al. Coupled edge-based smoothing finite element method for structural acoustic problems[J]. Journal of Mechanical Engineering, 2014, 50(4): 113-119.
[13] He Z C, Liu G R, Zhang G Y, et al. Dispersion error reduction for acoustic problems using the edge-based smoothed finite element method(ES-FEM)[J]. Int. J Numer. Meth. Eng., 2011, 86(11): 1322-1338.
[14] He Z C, Liu G R, Zhong Z H, et al. An edge-based smoothed finite element method(ES-FEM) for analyzing three-dimensional acoustic problems[J]. Computer methods in applied mechanics and engineering, 2009, 199(20-33).
[15] He Z C, Liu G R, Zhong Z H, et al. Dispersion free analysis of acoustic problems using the alpha finite element method[J]. Comput. Mech., 2010, 46(6): 867-881.
[16] Zeng W, Liu G R, Li D, et al. A smoothing technique based beta finite element method (βFEM) for crystal plasticity modeling[J]. Computer & Structures, 2016, 162: 48-67.
[17] Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods[J]. Int. J. Num. Meth. Eng., 1994, 37: 229-256.
[18] 张雄, 刘岩. 无网格法[M]. 北京: 清华大学出版社, 2004.
Zhang X, Liu Y. Meshless method[M]. Beijing: Tsinghua University Press, 2004.
[19] Wang H T, Zeng X Y. Calculation of sound fields in small enclosures using a meshless model[J]. Appl. Acoust., 2013, 74(3): 459-466.
 
PDF(982 KB)

363

Accesses

0

Citation

Detail

Sections
Recommended

/