[1] 梅木芳人,足立高雄,杉田浩之,萩原哲也,宇賀田健,羽場崎淳. 3 次元モデルを用いた耐震設計手法の高度化に関する研究(その1)非線形応答解析手法の検討[C]. 日本建築学会大会学術講演梗概集. 近畿, 2014. 9, 1119-1120
[2] Robinson W.H., Tucker A.G.. Tset results for lead-Rubber bearing for the William M Clayton building, Toe Toe bridge and Waiotukupuna bridge[J]. Bull. New Zealand Nad. Soe Eng, 1983, 14(1): 21-33.
[3] Fujita T., Suzuki S., Fujita S.. High damping rubber bearings for seismic isolation of buildings (1st report, hysteretic restoring force characteristics and analytical models), Trans. Japan soc. Mech. Eng. C56, 658-666,1990 (in Japanese).
[4] Park Y.J., Wen Y.K., Ang Ah-S. Random Vibration of hysteretic systems under bi-directional ground motions[J]. 1986, 14(4): 543-557.
[5] Kikuchi M., Aiken I. D.. An analytical hysteresis model for elastomeric seismic isolation bearings[J]. Engineering and Structural Dynamics, 1997, 26(2): 215-231.
[6] Lizuka M.. A macroscopic model for predicting large-deformation behaviors of laminated rubber bearing[J]. Engineering Structures, 2000, 22(4): 323-334.
[7] Yamamoto S., Kikuchi M., Ueda M., Aiken I.D.. A mechanical model for elastomeric seismic isolation bearings including the influence of axial load[J]. Earthquake Engineering and Structural dynamics, 2009, 38(2): 157-180.
[8] Takaoka E.. Shaking table test and analysis method on ultimate behavior of slender base-isolated structure supported by laminated rubber bearings [J]. Earthquake Engineering and Structural Dynamics, 2011, 40(5): 551-570.
[9] 日本建筑协会.隔震结构设计[M].刘文光,译.北京:地震出版社,2006.