Rolling bearing fault feature extraction based on VMD and 1.5-dimensional Teager energy spectrum

Xiang Ling, Zhang Lijia

Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (18) : 98-104.

PDF(1329 KB)
PDF(1329 KB)
Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (18) : 98-104.

Rolling bearing fault feature extraction based on VMD and 1.5-dimensional Teager energy spectrum

  • Xiang Ling, Zhang Lijia
Author information +
History +

Abstract

Rolling bearing fault signal is nonlinear and non-stationary. Combine variational mode decomposition (VMD) with 1.5-dimensional Teager energy spectrum, the purpose of rolling bearing fault diagnosis can be achieved. VMD is a new method of adaptive signal decomposition. 1.5-dimensional Teager energy spectrum not only has the advantage of 1.5-dimensional denoise, but also strengthens transient impact feature signal using Teager operator. Firstly, the rolling bearing fault signal was decomposed using VMD. The two components, which had obvious impact features, were extracted and reconstructed using the kurtosis-correlation coefficient criteria. Secondly, the reconstructed signal was analyzed using the 1.5-dimensional Teager energy spectrum. Lastly, according to the energy spectrum analysis of the reconstructed signal, the inner ring and rolling element fault features were extracted. The analysis of the simulation signal and the test signal verifies the effectiveness of the proposed method. Compared with ensemble empirical mode decomposition, the proposed method would be more distinctive and effectively identify fault feature of the rolling bearing.
 

Key words

 variational mode decomposition / 1.5-dimensional Teager energy spectrum / feature extraction;fault diagnosis;rolling bearing

Cite this article

Download Citations
Xiang Ling, Zhang Lijia. Rolling bearing fault feature extraction based on VMD and 1.5-dimensional Teager energy spectrum[J]. Journal of Vibration and Shock, 2017, 36(18): 98-104

References

[1]. 隋文涛,张 丹,Wilson Wang. 基于EMD和MKD的滚动轴承故障诊断方法[J]. 振动与冲击,2015,34(9):55-59.
SUI Wen-tao, ZHANG Dan, Wilson Wang. Fault diagnosis of rolling element bearings based on EMD and MKD [J]. Journal of vibration and shock, 2015, 34(9): 55-59.
[2]. 张 亢,程军圣. 基于局部均值分解和峭度图的滚动轴承包络分析方法[J]. 航空动力学报,2015, 30(12):3043-3050.
ZHANG Kang, CHENG Jun-sheng. Roller bearing envelope analysis method based on local mean decomposition and kurtogram [J]. Journal of aerospace power, 2015, 30(12): 3043-3050.
[3]. 钟先友,曾良才,赵春华. 局域均值分解和1.5维谱在机械故障诊断中的应用[J]. 中国机械工程,2013,24(2):452-457.
ZHONG Xian-you, ZENG Liang-cai, ZHAO Chun-hua. Application of local mean decomposition and 1.5 dimension spectrum in machinery fault diagnosis [J]. Chinese mechanical engineering, 2013, 30(2): 452-457.
[4]. 胡爱军,马万里,唐贵基. 基于集成经验模态分解和峭度准则的滚动轴承故障特征提取方法[J]. 中国电机工程学报,2012,32(11):106-111+153..
HU Ai-jun, MA Wan-li, TANG Gui-ji. Rolling bearing fault feature extraction method based on ensemble empirical mode decomposition and Kurtosis criterion[J]. Proceedings of the CSEE. 2012,32(11):106-111+153.
[5]. 唐贵基,王晓龙. 基于EEMD降噪和1.5维能量谱的滚动轴承故障诊断研究[J]. 振动与冲击,2014, 33(1):6-10.
TANG Gui-ji, WANG Xiao-long. Fault diagnosis for roller bearings based on EEMD de-noising and 1.5-dimensional energy spectrum[J]. Journal of vibration and shock, 2014, 33(1): 6-10.
[6]. 陈略,訾艳阳,何正嘉,等. 噪声协助的EMD-1.5维谱信号抗混分解与特征提取[J]. 振动与冲击, 2010,29(5):26-30.
CHEN Lue, ZI Yan-yang, HE Zheng-jia, et al. Noise-assisted EMD-1.5 dimension spectrum for signal anti-alias decomposition and feature extraction[J]. Journal of vibration and shock, 2010, 29(5): 26-30.
[7]. 向 玲,鄢小安. 汽轮机转子故障诊断中LMD法和EMD法的性能对比研究[J]. 动力工程学报,2014,34(12):945-951.
XIANG Ling, YAN Xiao-an. Performance contrast between LMD and EMD in fault diagnosis of turbine rotors[J]. Journal of Chinese society of power engineering, 2014, 34(12): 945-951.
[8]. Dragomiretskiy K, Zosso D. Variational mode decomposition[J]. IEEE Tran on Signal Processing, 2014,62(3):531-544.
[9]. 苏文胜,王奉涛,张志新,等. EMD降噪和谱峭度法在滚动轴承早期故障诊断中的应用[J]. 振动与冲击,2010,29(3):18-21+201.
SU Wen-sheng, WANG Feng-tao, ZHANG Zhi-xin, et al. Application of EMD denoising and spectral kurtosis in early fault diagnosis of rolling element bearings[J]. Journal of vibration and shock. 2010,29(3):18-21+201.
[10]. 刘长良,武英杰,甄成刚. 基于变分模态分解和模糊C聚类均值聚类的滚动轴承故障诊断[J]. 中国电机工程学报,2015,35(13):3358-3365.
LIU Chang-liang, WU Ying-jie, ZHEN Cheng-gang. Rolling bearing fault diagnosis based on variational mode decomposition and fuzzy C means clustering [J]. Proceedings of the CSEE. 2015,35(13):3358-3365
[11]. Salim L. Comparative study of signal denoising by wavelet threshold in empirical and variational mode decomposition domains[J]. Healthcare Technology Letters, 2014,1(3): 104‐109.
[12]. Aneesh C, Sachin K, Hisham P M, et al. Performance comparison of variational mode decomposition over empirical wavelet transform for the classification of power quality disturbances using support vector machine[J]. Procedia computer science, 2015,46: 372‐380.
[13]. 马增强,李亚超,刘政,等. 基于变分模态分解和Teager能量算子的滚动轴承故障特征提取[J]. 振动与冲击,2016,35(13):134-139.
MA Zeng-qiang, LI Ya-chao, LIU Zheng, et al. Rolling bearings’ fault feature extraction based on variational mode decomposition and Teager energy operator[J]. Journal of vibration and shock. 2016,35(13):134-139.
PDF(1329 KB)

567

Accesses

0

Citation

Detail

Sections
Recommended

/