Structural Damage Identification Based On Federal Extended Kalman Filter

Zhang Chun, Wang Lu-dan, Song Gu-quan, Xu Chang-hong, Liao Qun

Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (21) : 185-191.

PDF(1661 KB)
PDF(1661 KB)
Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (21) : 185-191.

Structural Damage Identification Based On Federal Extended Kalman Filter

  • Zhang Chun, Wang Lu-dan, Song Gu-quan, Xu Chang-hong, Liao Qun
Author information +
History +

Abstract

The interaction of structure damages and sensor faults will deteriorate identified results evidently, so an identification algorithm of structure damages based on Federated Extended Kalman Filter method (FEKF) is proposed by using free vibration signals. The presented method can identify the location and extent of damages accurately, and shows good robustness when the sensors work normally. Combined with the residual chi-square test, FEKF also can eliminate the effects of fault sensors by automatic detection and removal of the fault sensor signal. Numerical simulation and experiments show that FEKF can ensure the accuracy and stability of the damage identification and detect fault signal effectively.
 

Key words

 federal extended Kalman filter / damage identification / sensor fault / residual chi-square test / decentralized filter

Cite this article

Download Citations
Zhang Chun, Wang Lu-dan, Song Gu-quan, Xu Chang-hong, Liao Qun. Structural Damage Identification Based On Federal Extended Kalman Filter[J]. Journal of Vibration and Shock, 2017, 36(21): 185-191

References

[1] 雷鹰,江永强.输入输出信息有限观测下的结构损伤诊断[J]. 振动、测试与诊断, 2012, 32(5): 736-740,860.
  LEI Ying, Jiang Yongqiang. Structural Damage Detection Technique with Limited Inputand Output Measurement Signals[J]. Journal of Vibration, Measurement & Diagnosis, 2012, 32(5): 736-740,860.
[2] Calabrese A, G Serino, et al. An extended Kalman Filter procedure for damage detection of base-isolated structures [P]. 2014 IEEE Workshop on Environmental Energy and Structural Monitoring Systems (EESMS), Naples, Italy. IEEE, USA, 2014.
[3] Yang J N, Huang H. Sequential non-linear least-square estimation for damage identification of structures with unknown inputs and unknown outputs[J]. International Journal of Non-linear mechanics, 2007, 42(5): 789-801.
[4]樊素英, 李忠献. 基于广义卡尔曼滤波的桥梁结构物理参数识别[J]. 计算力学学报, 2007, 24(4): 472-476.
  Fan Suying, Li Zhongxian. Identification on physical parameters of bridge structures based on extended Kalman filter[J]. Chinese Journal of Computational Mechanics, 2007, 24(4): 472-476.
[5]赵博宇, 丁勇, 吴斌.基于扩展卡尔曼估计算法的地震模拟振动台模型识别 [J]. 振动与冲击, 2014, 33(12): 145-150.
  ZHAO Bo-yu,DING Yong,WU Bin. Identification of shaking table model for seismicsimulation based on an extended Kalman estimator[J]. Journal of Vibration and Shock, 2014, 33(12): 145-150.
[6]谢献忠, 易伟建. 结构物理参数时域识别的子结构方法研究[J]. 工程力学, 2005, 22(5): 94-98.
  Xie Xianzhong, Yi Weijian. A substructure method for parameter estimation in time domain[J]. Engineering Mechanics, 2005, 22(5): 94-98.
[7]穆腾飞, 周丽. 输入未知条件下基于自适应广义卡尔曼滤波的结构损伤识别[J]. 振动工程学报, 2014, 27(6): 827-834.
  Mu Teng-fei, Zhou Li. Structural damage identification using adaptive extended Kalman filter with unknown inputs. Journal of Vibration Engineering, 2014, 27(6): 827-834.
[8]周东华, 胡艳艳. 动态系统的故障诊断技术[J]. 自动化学报, 2009, 35(6):748-758.
  Zhou Dong-Hua, Hu Yan-Yan. Fault Diagnosis Techniques for Dynamic Systems[J]. Acta Automatica Sinica, 2009, 35(6):748-758.
[9] Carlson N A, Berarducci M P. Federated Kalman filter simulation result[J]. Journal of the institute of Navigation, 1994, 41(3): 297-321.
[10]卞鸿巍, 李安, 覃方君. 现代信息融合技术在组合导航中的应用[M]. 北京: 国防工业出版社, 2010.
  Bian Hongwei, Li An, Qin Fangjun. Modern Information Fusion Technology in Integrated Navigation[M]. Beijing: National Defense Industry Press, 2010.
[11]戴霖.基于扩展卡尔曼滤波的结构损伤识别方法[D].南昌, 南昌大学, 2014.
  Dai Lin. Structural Damage Identification Based on Extended Kalman Filter[D]. Nanchang, Nanchang University, 2014.
[12] Weber B, Paultre P, Proulx J. Consistent regularization of nonlinear model updating for damage identification[J]. Mechanical Systems and Signal Processing, 2009, 23(6): 1965-1985.
PDF(1661 KB)

Accesses

Citation

Detail

Sections
Recommended

/