Active Double-Panel Sound Insulation Structure Based on Active Acoustical Boundary Acting at the Boundaries of Air Gap Sound Field

NING Shaowu1, SHI Zhiyu1, XU Xinyin2

Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (21) : 203-212.

PDF(1868 KB)
PDF(1868 KB)
Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (21) : 203-212.

Active Double-Panel Sound Insulation Structure Based on Active Acoustical Boundary Acting at the Boundaries of Air Gap Sound Field

  • NING Shaowu1, SHI Zhiyu1, XU Xinyin2
Author information +
History +

Abstract

Based on active acoustical boundary method the active double-panel sound insulation structure , which consists of the double-panel structure and the active acoustical boundary arranged on the boundary of the air gap sound field, is presented. Simply supported panels are used to replace the active acoustical boundary and are acted by control forces. Using the acoustoelsticity theory an analytical model is developed to calculate the optimal control forces with the minimum radiation sound power and the minimum air gap sound power as control target. On the basis of developed theoretical model, the sound transmission loss (STL) and responses of the subsystems of the active double-panel sound insulation structure are studied before and after control. Meanwhile, the effect of the dimensions of the active acoustical boundary on STL and responses of the subsystems are taken into account. The simulations carried out have shown that active acoustical boundary control strategy can effectively improve the sound insulation performance of double-panel structure and the better control effect can be gotten with the minimum radiation sound power than that with the minimum air gap sound power. The active acoustical boundary has no influence on the vibration response of the upper panel whilst the vibration responses of the lower panel and the air gap sound power are suppressed effectively. Different dimensions of the active acoustical boundaries can improve the sound insulation performance. Especially, in low frequency the same insulation performance is gotten for the different dimensions, but in the high frequency, the effect of the dimensions of the active acoustical boundaries on the STL and responses of the subsystems has no rules to follow, so the dimensions of the active acoustical boundaries can be optimal to improve the insulation performance for specific frequency range.

Key words

Active acoustical boundary method / Acoustoelsticity theory / Sound transmission loss / Active double-panel sound insulation structure / Radiation sound power

Cite this article

Download Citations
NING Shaowu1, SHI Zhiyu1, XU Xinyin2. Active Double-Panel Sound Insulation Structure Based on Active Acoustical Boundary Acting at the Boundaries of Air Gap Sound Field[J]. Journal of Vibration and Shock, 2017, 36(21): 203-212

References

[1] 杜功焕,朱哲民,龚秀芬. 声学基础[M],南京:南京大学出版社,2009.
Du G H, Zhu Z M, Gong X F. Fundamentals of Acoustics[M], Nanjing: Nanjing University Press, 2009.
[2] Xin F X, Lu T J, Chen C Q. Sound Transmission Through Simply Supported Finite Double-Panel Partitions With Enclosed Air Cavity [J]. Journal of Vibration and Acoustics, 2010, 132(1): 011008: 11001-11011.
[3] 陈克安. 有源噪声控制[M],北京:国防工业出版社,2014.
Chen K A. Active Noise Control [M], Beijing: National Defense Industry Press, 2014.
[4] Pan J, Synder S D, Hansen C H, Fuller C R. Active control of far-field sound radiated by a rectangular panela general analysis [J]. Journal of the Acoustical society of America, 1992, 91: 2056-2066.
[5] Lee J C, Chen J C. Active control of sound radiation from a rectangular plate excited by a line moment [J]. Journal of Sound and Vibration, 1999, 220(1): 99–115
[6] Pan J, Bies D A. The effect of fluid–structural coupling on sound waves in an enclosure: Theoretical part [J]. Journal of the Acoustical society of America, 1990, 87(2): 691-707.
[7] Pan J, Hansen C H, Bies D A. Active control of noise transmission through a panel into a cavity- I. Analytical study [J]. Journal of the Acoustical society of America, 1990, 87(5): 2098-2108.
[8] Kim S M, Brennan M J. Active control of harmonic sound transmission into an acoustic enclosure using both structural and acoustic actuators [J]. Journal of the Acoustical society of America, 2000, 107(5): 32523-2534.
[9] Pan J, Bao C. Analytical study of different approaches for active control of sound transmission through double walls [J]. Journal of the Acoustical society of America, 1998, 103(4): 1916-1922.
[10] Carneal J P, Fuller C R. An analytical and experimental investigation of active structural acoustic control of noise transmission through double panel systems [J]. Journal of Sound and vibration, 2004, 272(3-5): 749-771.
[11] 靳国永,张洪田,刘志刚,等. 基于声辐射模态的双层板声传输有源控制数值仿真和分析研究[J]. 振动工程学报,2011, 24(4): 435-443.
Jin G Y, Zhang H T, Liu Z G, et al. Numerical analysis of active control of sound transmission through a double-panel structure by using radiation modes [J]. Journal of vibration engineering, 2011, 24(4): 435-443.
[12] Li Y Y, Cheng L. Mechanisms of active control of sound transmission through a linked double-wall system into an acoustic cavity. Applied Acoustics, 2008, 69: 614–623.
[13] Pietrzko S J, Mao Q. New results in active and passive control of sound transmission through double wall structures [J]. Aerospace Science and Technology, 2008, 12(1): 42-53.
[14] Dowell E H, Gorman G G, Smith D A. Acoustoelasticity: General theory, acoustic natural modes and forced response to sinusoidal excitation, including comparisons with experiment [J]. Journal of Sound and vibration, 1977, 52(4): 519-542.
[15] 靳国永,刘志刚,杨铁军. 双层板腔结构声辐射及其有源控制研究[J]. 声学学报,2010, 35(6): 665-677.
Jin G Y, Liu Z G, Yang T J. An analytical investigation of active control of sound transmission through double panel-cavity system. ACTA Acoustic, 2010, 35(6): 665-677.
PDF(1868 KB)

426

Accesses

0

Citation

Detail

Sections
Recommended

/