Design and vibration analysis of a micromachined tuning fork gyroscope with anchored coupling mechanism

Zhang Ya-ping, LIU Hai-peng, Guan Yan-wei

Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (21) : 232-237.

PDF(1089 KB)
PDF(1089 KB)
Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (21) : 232-237.

Design and vibration analysis of a micromachined tuning fork gyroscope with anchored coupling mechanism

  • Zhang Ya-ping, LIU Hai-peng, Guan Yan-wei
Author information +
History +

Abstract

A MEMS tuning fork gyroscope with anchored coupling mechanism is designed to investigate the mode ordering and vibration sensitivity. The proposed TFG prioritizes the anti-phase drive-mode using a levered mechanism while the sense-mode is prioritized using an anchored coupling ring spring linked by four linear beams, which can improve the mode ordering. Meanwhile, the in-phase frequency of the anchored coupling TFG is improved by 30% than the anti-phase frequency in the sense direction. A two order vibration differential equation of tuning fork gyroscope is established and is solved by using the coordinate transformation method. The simulations and analytical results demonstrate that the vibration output is reduced by 74.8 and 88.0% in the anti-phase mode and in-phase mode frequencies, respectively. The anchored coupling TFG can improve the mode ordering and suppress the vibration output.

Key words

Anchored coupling mechanism / tuning fork gyroscopes / mode ordering / vibration sensitivity / Coordinate transformation method

Cite this article

Download Citations
Zhang Ya-ping, LIU Hai-peng, Guan Yan-wei. Design and vibration analysis of a micromachined tuning fork gyroscope with anchored coupling mechanism[J]. Journal of Vibration and Shock, 2017, 36(21): 232-237

References

[1]文永蓬,尚慧琳. 微陀螺动力学建模与非线性分析[J].振动与冲击, 2015, 34(4):69-74.
Wen Yong-peng, Shang Hui-lin. Dynamic modeling and nonlinear analysis for a microgyroscope[J]. Journal of vibration and shock, 2015, 34(4):69-74.
[2]曹慧亮,李宏生,王寿荣,杨波,黄丽斌. MEMS陀螺仪结构模型及系统仿真[J].中国惯性技术学报, 2013, 21(4):524-529.
Cao Hui-liang, Li Hong-sheng, Wang Shou-rong, Yang Bo, Huang Li-bin. Structure model and system simulation of MEMS gyroscope[J]. Journal of Chinese Inertial Technology, 2013, 21(4):524-529.
[3]Shkel, AM. Type I and Type II Micromachined  Vibratory  Gyroscopes. In: Proceedings Position Location and Navigation Symposium (PLANS)[C], San Diego, 2006:586–593.
[4]Prikhodko IP, Zotov SA, Trusov AA, Shkel AM. Foucault pendulum on a chip: Rate integrating silicon MEMS gyroscope[J]. Sens Actuator A: Phys, 2012, 177:67-78.
[5]Cho J, Gregory J, Najafi K. High-Q, 3 kHz single-crystal silicon cylindrical rate-integrating gyro (CING)[C]. Proceedings MEMS, Paris, 2012:172-175.
[6]Trusov AA, Schofield AR, Shkel AM. Micromachined rate gyroscope architecture with ultra-high quality factor and improved mode ordering[J]. Sens Actuator A: Phys, 2011, 165(1):26-34.
[7]Yoon SW, Lee S, Najafi K. Vibration-induced errors in MEMS tuning fork gyroscopes[J]. Sens Actuator A: Phys, 2012, 180:32-44.
[8]Singh TP, Sugano K, Tsuchiya T, Tabata O. Frequency response of in-plane coupled resonators for investigating the acceleration sensitivity of MEMS tuning fork gyroscopes[J]. Microsyst Technol, 2012, 18(6):797-803.
[9]Singh TP, Sugano K, Tsuchiya T, Tabata O. Experimental verification of frequency decoupling effect on acceleration sensitivity in tuning fork gyroscopes using in-plane coupled resonators[J]. Microsyst Technol, 2013, 20(3):403-411.
[10]Guan, YW, Gao, SQ, Liu, HP, Niu, SH. Acceleration sensitivity of tuning fork gyroscopes:theoretical model, simulation and experimental verification[J]. Microsyst Technol, 2015, 21(6), 1313-1323.
PDF(1089 KB)

386

Accesses

0

Citation

Detail

Sections
Recommended

/