Numerical simulation method for 2-DOF vortex-induced vibration

Sun Liping,Zhang Xu,Ni Wenchi

Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (23) : 22-26.

PDF(1956 KB)
PDF(1956 KB)
Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (23) : 22-26.

Numerical simulation method for 2-DOF vortex-induced vibration

  •  Sun Liping,Zhang Xu,Ni Wenchi
Author information +
History +

Abstract

The existing simulation results for 2-DOF vortex-induced vibration are not satisfied, especially, the maximum amplitude estimation of its responses. In tests of Jauvtis & Williamson, the maximum amplitude of a cylinder with a low mass ratio could reach 1.5D, this phenomenon was named “super upper branch”. But, few simulation results of current studies can reach 1.3D even unable to capture super upper branch. The reasons were likely to be defects of the turbulence model itself and the unreasonable setting of numerical simulation parameters. Aiming at the problems mentioned above, an improved k-ε turbulence model was used to study the effect of acceleration on responses of vortex-induced vibration here based on the software OpenFOAM and optimize the numerical simulation method. By analyzing responses of amplitude, phase, trajectory and tail vortex, it was shown that 2-DOF vortex-induced vibration can be numerically simulated more accurately with the improved k-ε turbulence model under appropriate accelerations.
 

Key words

 vortex-induced vibration (VIV) / k-&epsilon / turbulence model / acceleration / numerical simulation

Cite this article

Download Citations
Sun Liping,Zhang Xu,Ni Wenchi. Numerical simulation method for 2-DOF vortex-induced vibration[J]. Journal of Vibration and Shock, 2017, 36(23): 22-26

References

[1] 范杰利, 黄维平. 细长立管两向自由度涡激振动数值研究[J]. 振动与冲击, 2012, 31(24):65-68.
Fan J L, Huang W P. Numerical simulation of 2-DOF vortex-induced vibration of a long riser[J]. Zhendong Yu Chongji/journal of Vibration & Shock, 2012, 31(24):65-47.
[2] Jauvtis N, Williamson C. H. K. The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[J]. Journal of Fluid Mechanics, 2004, 509(509):23-62.
[3] Williamson C. A high-amplitude 2T mode of vortex-induced vibration for a light body in XY motion[J]. European Journal of Mechanics - B/Fluids, 2004, 23(1):107-114.
[4] Pan Z Y, Cui W C, Miao Q M. Numerical simulation of vortex-induced vibration of a circular cylinder at low mass-damping using RANS code[J]. Journal of Fluids & Structures, 2007, 23(1):23-37.
[5] Sanchis A, Sælevik G, Grue J. Two-degree-of-freedom vortex-induced vibrations of a spring-mounted rigid cylinder with low mass ratio[J]. Journal of Fluids & Structures, 2008, 24(6):907-919.
[6] 谷家扬, 杨建民, 肖龙飞. 两种典型立柱截面涡激运动的分析研究[J]. 船舶力学, 2014(10):1184-1194.
   Gu, J Y, YANG J M and XIAO L F. Study on vortex induced motion of two typical different cross-section columns [J]. Journal of Ship Mechanics, 2014(10):1184-1194.
[7] 林琳, 王言英. 不同湍流模型下圆柱涡激振动的计算比较[J]. 船舶力学, 2013(10):1115-1125.
Lin L, Wang Y Y. Comparison between different turbulence models on vortex induced vibration of circular cylinder[J]. Chuan Bo LI Xue/journal of Ship Mechanics, 2013, 17(10):1115-1125.
[8] Srinil N, Zanganeh H, Day A. Two-degree-of-freedom VIV of circular cylinder with variable natural frequency ratio: Experimental and numerical investigations[J]. Ocean Engineering, 2013, 73(8):179-194.
[9] Medic G. Etude mathématique des modèles aux tensions de Reynolds et simulation numérique d'écoulements turbulents sur parois fixes et mobiles[J]. Bibliogr, 1999.
[10] Younis B A, Przulj V P. Computation of turbulent vortex shedding[J]. Computational Mechanics, 2006, 37(5):408-425.
[11] Guilmineau E, Queutey P. Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow[J]. Journal of Fluids & Structures, 2004, 19(4):449-466.
[12] Durão D F G, Heitor M V, Pereira J C F. Measurements of turbulent and periodic flows around a square cross-section cylinder [J]. Experiments in Fluids, 1988, 6(5):298-304.
[13] Jung Y W, Park S O. Vortex-shedding characteristics in the wake of an oscillating airfoil at low Reynolds number [J]. Journal of Fluids & Structures, 2005, 20(3):451-464.
[14] Cant S. S. B. Pope, Turbulent Flows, Cambridge University Press, Cambridge, U.K. 2000, 771 pp.[J]. Combustion & Flame, 2001, 125(4):1361-136
PDF(1956 KB)

Accesses

Citation

Detail

Sections
Recommended

/