Vibration prediction of a hydro-power house base on IFA-BPNN

SONG Zhiqiang, GENG Dan, SU Chenhui, LIU Yunhe

Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (24) : 64-69.

PDF(1051 KB)
PDF(1051 KB)
Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (24) : 64-69.

Vibration prediction of a hydro-power house base on IFA-BPNN

  • SONG Zhiqiang, GENG Dan, SU Chenhui, LIU Yunhe
Author information +
History +

Abstract

A hydro-power house vibration prediction model was built based on the BP neural network optimized with the improved firefly algorithm (IFA-BPNN). Aiming at some disadvantages of FA including slow convergence, and easy to fall in local optimal values, a dynamic random local searching algorithm was introduced to speed up the convergent velocity, and do some mutation operations to avoid the optimization to fall into local optimal values.  A dynamic step length updating measure was proposed to improve the accuracy of the optimization, and avoid the optimal solutions’ oscillation problem. Simulation examples showed that the prediction accuracy and convergent speed of the IFA-BPNN method are obviously improved, it can be used to predict vibration responses of a hydro-power house.

 

Key words

hydro-power house / vibration / improved firefly algorithm (IFA) / back-propagation neural network (BPNN)

Cite this article

Download Citations
SONG Zhiqiang, GENG Dan, SU Chenhui, LIU Yunhe. Vibration prediction of a hydro-power house base on IFA-BPNN[J]. Journal of Vibration and Shock, 2017, 36(24): 64-69

References

[1] 马震岳,董毓新. 水电站机组及厂房振动的研究与治理[M]. 北京:中国水利水电出版社,2004.
    MA Zhenyue, DONG Yuxin. Vibration and its corrective actions of water turbine generator set and power house [M]. Beijing: China Water &Power Press, 2004.
[2] 马震岳,孙万泉,陈维江. 基于遗传算法的地下发电厂房动态识别[J]. 大连理工大学学报,2004,3(44):292-296.
   MA Zhenyue, SUN Wanquan, CHEN Weijiang. Dynamic identification for underground power house based on genetic algorithm [J]. Journal of Dalian University of Technology, 2004,3(44):292-296.
[3] 练继建,张辉东,王海军. 水电站厂房结构振动响应的神经网络预测[J]. 水利学报,2007,3(38):361-364.
    Lian Jijian, ZHANG Huidong, WANG Haijun. Prediction of vibration response of powerhouse structures by means of artificial neural network method [J]. Journal of Hydraulic Engineering, 2007,3(38):361-364.
[4] 徐国宾,韩文文,王海军. 基于SSPSO优化GRNN的水电站厂房结构振动响应预测[J]. 振动与冲击,2015, 34(4):104-109.
    XU Guobin, HAN Wenwen, WANG Haijun. Vibration response prediction of a powerhouse structure based on SSPSO-GRNN [J]. Journal of Vibration and Shock, 2015, 34(4):104-109.
[5] Yang X. Firefly algorithms for multimodal optimization [C]//Proceeding of the International Conference on Stochastic Algorithms: Foundations and Applications. Beilin: Springer-Verlag, 2009: 169-178.
[6] 龙文,蔡绍洪,焦建军,等. 求解约束优化问题的萤火虫算法及其工程应用[J]. 中南大学学报(自然科学版),2015,4(46):1260-1266.
    LONG Wen, CAI Shaohong, JIAO Jianjun, et al. Firefly algorithm for solving constrained optimization problems and engineering applications [J]. Journal of Central South University(Science and Technology), 2015,4(46):1260-1266.
[7] 陈洁钰,姚佩阳,王勃,税冬东. 基于结构熵和IGSO-BP算法的动态威胁评估[J]. 系统工程与电子技术,2015,37(5):1076-1083。
    CHEN Jieyu, YAO Peiyang, WANG Bo, SUI Dongdong. Dynamic threat assessment based on structure entropy and IGSO-BP algorithm [J]. System Engineering and Electronics, 2015,37(5):1076-1083.
[8] Fister I, JR F, Yang X S. A comprehensive review of firefly algorithm [J]. Swarm and Evolutionary Computation, 2013,13:34-46.
[9] Yang X, Hosseini S, Gandomi A. Firefly algorithm for solving  non-convex economic dispatch problems with value loading effect[J]. Applied Soft Computing, 2012,12(3):1180-1186.
[10] Kumbharans S, Pandey M. Solving traveling salesman problem using firefly algorithm[J]. International Journal for Research in Science & Advanced Technologies,2013, 2(2):53-57.
[11] 曾冰,李明富,张翼,等. 基于萤火虫算法的装配序列规划研究[J]. 机械工程学报,2013,49(11):177-184.
    ZENG Bing, LI Mingfu, ZHANG Yi, MA Jianhua. Research on Assembly Sequence Planning Based on Firefly Algorithm [J]. Journal of Mechanical Engineering, 2013,49(11):177-184.
[12] Pal S, Rai C, Singh A. Comparative study of firefly algorithm and partical swarm optimization for noisy non-linear optimization problems [J]. International Journal of Intelligent Systems and Applications, 2012, 4(10):50-57.
[13] Nandy S, Sarka P P, Das A. Analysis of nature-inspired firefly algorithm based back-propagation neural network training [J]. Int.J. Computer Applications, 2012, 43(22):8-16.
[14] Hamzacebi C. Improving genetic algorithms’ performance by local search for continuous function optimization[J]. Applied Mathematics and Computation,2008,196(1):309-317.
[15] Wang Y, Cai Z, Zhou Y, et,al. Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handing technique [J]. Structural Multisiscipline Optinization, 2009, 37(4):395-413.
[16] Wanas N, Auda G, Kamel M S, et al. On the optimal number of hidden nodes in a neural network [C]. Proceeding of 1998 IEEE Canada Conference on Electrical and Computer Engineering, Toronto, Canada,
1998. IEEE, 2002, 918-921.
PDF(1051 KB)

476

Accesses

0

Citation

Detail

Sections
Recommended

/