Application of local mean decomposition and wavelet threshold in magnetotelluric noise suppression

LI Jin1,2,PENG Chong1,TANG Jingtian2,YAN Huan1,CAI Jianhua3

Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (5) : 134-141.

PDF(1071 KB)
PDF(1071 KB)
Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (5) : 134-141.

Application of local mean decomposition and wavelet threshold in magnetotelluric noise suppression

  • LI Jin1,2,PENG Chong1,TANG Jingtian2,YAN Huan1,CAI Jianhua3
Author information +
History +

Abstract

The magnetotelluric sounding method is a method based on the principle of electromagnetic induction,to detect electrical properties and distribution characteristics of underground rock layers by use of the natural alternating electromagnetic field.However,the natural electromagnetic field has a wider frequency band range and weak signals,and these signals are easy to be disturbed by all kinds of electromagnetic noise in the actual measurement,so the interpretation level of the subsequent electromagnetic inversion method is seriously effected.In order to solve this problem,combining the adaptability of local mean decomposition (LMD) with the multi-resolution of wavelet,here the magnetotelluric noise suppression method based on local mean decomposition and wavelet threshold was proposed.First of all,LMD was used to divide a noisy signal into a number of product functiion (PF) components.Then,according to magnetotelluric signal-to-noise characters,PF1 component was retained,the appropriate wavelet threshold was chosen to denoise the resteach PF component.Finally,the magnetotelluric useful signal was obtained with superposition and reconstruction.Using a computer to simulate typical strong interferences,the denoising performances of the proposed method were studied under the conditions of different wavelet functions,decomposition layers and threshold modes,and the method was applied to process the magnetotelluric data measured in ore concentration areas.The results showed that the proposed method can better extract the outline features of large-scale strong interferences  superimposed on weak magnetotelluric signals,and the apparent resistivity curve is more smooth and continuous;  the quality of magnetotelluric data is improved significantly in lower frequency bands.

Key words

local mean decomposition / wavelet threshold / magnetotelluric / noise suppression

Cite this article

Download Citations
LI Jin1,2,PENG Chong1,TANG Jingtian2,YAN Huan1,CAI Jianhua3. Application of local mean decomposition and wavelet threshold in magnetotelluric noise suppression[J]. Journal of Vibration and Shock, 2017, 36(5): 134-141

References

[1] Chen J, Heincke B, Jegen M, et al. Using empirical mode decomposition to process marine magnetotelluric data[J]. Geophysical Journal International, 2012, 190(1): 293-309.
[2] 汤井田, 徐志敏, 肖晓, 等. 庐枞矿集区大地电磁测深强噪声的影响规律[J]. 地球物理学报, 2012, 55(12): 4147-4159.
TANG Jing-tian, XU Zhi-min, XIAO Xiao, et al. Effect rules of strong noise on magnetotelluric (MT) sounding in the Luzong ore cluster area[J]. Chinese J. Geophys., 2012, 55(12): 4147-4159.
[3] Cai J H, Tang J T, Hua X R, et al. An analysis method for magnetotelluric data based on the Hilbert-Huang transform[J]. Exploration Geophysics, 2009, 40(2): 197-205.
[4] 景建恩, 魏文博, 陈海燕, 等. 基于广义S变换的大地电磁测深数据处理[J]. 地球物理学报, 2012, 55 (12): 4015-4022.
    JING Jian-en, WEI Wen-bo, CHEN Hai-yan, et al. Magnetotelluric sounding data processing based on generalized S transformation[J]. Chinese J. Geophys., 2012, 55(12): 4015-4022.
[5] Kapple K N. A data variance technique for automated despiking of magnetotelluric data with a remote reference[J]. Geophysical Prospecting, 2012, 60(1): 179-191.
[6] 王辉, 魏文博, 金胜, 等. 基于同步大地电磁时间序列依赖关系的噪声处理[J]. 地球物理学报, 2014, 57(2): 531-545.
    WANG Hui, WEI Wei-bo, JIN Sheng, et al. Removal of magnetotelluric noise based on synchronous time series relationship[J]. Chinese J. Geophys., 2014, 57(2): 531-545.
[7] 汤井田, 李晋, 肖晓, 等. 数学形态滤波与大地电磁噪声压制[J]. 地球物理学报, 2012,55(5): 1784-1793.
    TANG Jing-tian, LI Jin, XIAO Xiao, et al. Mathematical morphology filtering an noise suppression of magnetotelluric sounding data[J]. Chinese J. Geophys., 2012, 55(5): 1784-1793.
[8] 李晋, 汤井田, 王玲, 等. 基于信号子空间增强和端点检测的大地电磁噪声压制[J]. 物理学报, 2014, 63(1): 019101.
    LI Jin, TANG Jing-tian, WANG Ling, et al. Noise suppression for magnetotelluric sounding data based on signal subspace enhancement and endpoint detection[J]. Acta Phys. Sin., 2014, 63(1): 019101.
[9] 程军圣, 杨宇, 于德介. 局部均值分解方法及其在齿轮故障诊断中的应用[J]. 振动工程学报, 2009, 22(1): 76-84.
    CHENG Jun-sheng, YANG Yu, YU De-jie. The local mean decomposition method and its application to gear fault diagnosis[J]. Journal of Vibration Engineering, 2009, 22(1): 76-84.[10] 李志农, 刘卫兵, 易小兵. 基于局域均值分解的机械故障欠定盲源分离方法研究[J]. 机械工程学报, 2011, 47(7): 97-102.
    LI Zhi-nong, LIU Wei-bing, YI Xiao-bing. Underdetermined blind source separation method of machine faults based on local mean decomposition[J]. Journal of Mechanical Engineering, 2011, 47(7): 97-102.
[11] 武哲, 杨绍普, 张建超. 基于LMD自适应多尺度形态学和Teager能量算子方法在轴承故障诊断中的应用[J]. 振动与冲击, 2016, 35(3): 7-13.
    WU Zhe, YANG Shao-pu, ZHANG Jian-chao. Bearing fault feature extraction method based on LMD adaptive multiscale morphology and energy operator demodulating[J]. Journal of Vibration and Shock, 2016, 35(3): 7-13.
[12] 张焱, 汤宝平, 邓蕾, 等. 基于局域均值分解的自适应滤波滚动轴承故障特征提取[J]. 振动与冲击, 2015, 34(23): 25-30.
    ZHANG Yan, TANG Bao-ping, DENG Lei, et al. Fault feature extraction for rolling bearing based on adaptive wavelet filtering and LMD[J]. Journal of Vibration and Shock, 2015, 34(23): 25-30.
[13] Smith J S. The local mean decomposition and its application to EEG perception data[J]. Journal of the Royal Society Interface, 2005, 2(5): 443-454.
[14] 侯高燕, 吕勇, 肖涵, 等. 基于LMD的多尺度形态学在齿轮故障诊断中的应用[J]. 振动与冲击, 2014, 33(19): 69-73.
    HOU Gao-yan, Lü Yong, XIAO Han, et al. Based on the LMD and multi-scale morphology used in gear fault diagnosis[J]. Journal of Vibration and Shock, 2014, 33(19): 69-73.
[15] 张亢, 程军圣, 杨宇. 基于局部均值分解与形态谱的旋转机械故障诊断方法[J]. 振动与冲击, 2013, 32(9): 135-140.
    ZHANG Kang, CHENG Jun-sheng, YANG Yu. Rotating machinery fault diagnosis based on local mean decomposition and pattern spectrum[J]. Journal of Vibration and Shock, 2013, 32(9): 135-140.
[16] 汤井田, 张弛, 肖晓, 等. 大地电磁阻抗估计方法对比[J]. 中国有色金属学报, 2013, 23(9): 2351-2358.
TANG Jing-tian, ZHANG Chi, XIAO Xiao, et al. Comparison of methods for magnetotelluric impedance estimation[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(9): 2351-2358.
[17] 李晋, 汤井田, 肖晓, 等. 基于组合广义形态滤波的大地电磁资料处理[J]. 中南大学学报(自然科学版), 2014, 45(1): 173-185.
LI Jin, TANG Jing-tian, XIAO Xiao, et al. Magnetotelluric data processing based on combined generalized morphological filter[J]. Journal of Central South University (Science and Technology), 2014, 45(1): 173-185.
PDF(1071 KB)

321

Accesses

0

Citation

Detail

Sections
Recommended

/