Effect of each direction component in 3D wind field on dynamic response of heliostat

FENG Yu,CHEN Xiao’an

Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (8) : 156-163.

PDF(1884 KB)
PDF(1884 KB)
Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (8) : 156-163.

Effect of each direction component in 3D wind field on dynamic response of heliostat

  • FENG Yu,CHEN Xiao’an
Author information +
History +

Abstract

In the process of the wind-resistant design of heliostat,only longitudinal wind was considered and vertical and transverse winds were neglected in literature.For this reason,power spectrums of fluctuating wind pressure in different wind directions and an AR model were proposed to simulate time history samples for 3D wind field in this work.And then the mean wind loads and fluctuating wind loads were applied to the finite element model of the heliostat.The effects of each direction component of the wind field on heliostat were investigated by evaluating dynamic characteristics and wind-induced dynamic responses of the heliostat in five positions.The results show that the vertical and transverse fluctuating winds may cause the resonant response in the first five natural frequencies of the heliostat.Furthermore,the wind vibration coefficients of displacement for operational positions are small,in which only the longitudinal and vertical winds can be taken as the influence factors of dynamic responses.In contrast,the wind vibration coefficients of displacement are large as well as the longitudinal,vertical,and transverse winds should be taken into account simultaneously when the heliostat is in survival stow positions.
 
 

Key words

heliostat / 3D wind field / power spectrum of fluctuating wind pressure / AR model / dynamic response

Cite this article

Download Citations
FENG Yu,CHEN Xiao’an. Effect of each direction component in 3D wind field on dynamic response of heliostat[J]. Journal of Vibration and Shock, 2017, 36(8): 156-163

References

[1] Kolb G J, Jones S A, Donnelly M W, et al. Heliostat cost reduction study [R]. SAND2007-3293. New Mexico, USA: Sandia National Laboratories, 2007.
[2] Coventry J, Pye J. Heliostat cost reduction-where to now? [C]// Pitchumani R. Energy Procedia. Amsterdam, Netherland: Elsevier Science BV, 2014: 60-70.
[3] Peterka J A, Hosoya N, Bienkiewicz B, et al. Wind load reduction for heliostats [R]. SERI/STR-253-2859. Colorado, USA: Colorado State University, 1986.
[4] Peterka J A, Tan Z, Bienkiewicz B, et al. Mean and peak wind load reduction on heliostats [R]. SERI/STR-253-3212. Colorado, USA: Colorado State University, 1987.
[5] Pfahl A, Uhlemann H. Wind loads on heliostats and photovoltaic trackers at various Reynolds numbers [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99: 964-968.
[6] Pfahl A, Buselmeier M, Zaschke M. Wind loads on heliostats and photovoltaic trackers of various aspect ratios [J]. Solar Energy, 2011, 85: 2185-2201.
[7] Gong B, Wang Z F, Li Z N, et al. Fluctuating wind pressure characteristics of heliostats [J]. Renewable Energy, 2013, 50: 307-316.
[8] Gong B, Li Z N, Wang Z F, et al. Wind-induced dynamic response of heliostat [J]. Renewable Energy, 2012, 38: 206-213.
[9] 王莺歌, 李正农, 李秋胜, 等. POD法在定日镜风振响应计算中的应用[J]. 振动与冲击, 2008, 27(12): 107-111.
WANG Ying-ge, LI Zheng-nong, LI Qiu-sheng, et al. Application of POD in calculation of heliostat’s dynamic response to wind induction [J]. Journal of Vibration and Shock, 2008, 27(12): 107-111.
[10] 王莺歌, 李正农, 宫博, 等. 定日镜结构风振响应的时域分析[J]. 振动工程学报, 2008, 21(5): 458-464.
WANG Ying-ge, LI Zheng-nong, GONG Bo, et al. Time-domain analysis on wind-induced dynamic response of heliostat [J]. Journal of Vibration Engineering, 2008, 21(5): 458-464.
[11] 张相庭. 工程结构风荷载理论和抗风计算手册[M]. 上海: 同济大学出版社, 1990.
[12] 杨庆山, 孙学东. 水平风荷载与竖向风荷载的特性分析比较[J]. 哈尔滨建筑大学学报, 1997, 30(6): 43-50.
YANG Qing-shan, SUN Xue-dong. Horizontal and vertical wind excitations [J]. Journal of Harbin University of Architecture and Engineering, 1997, 30(6): 43-50.
[13] 黄本才. 结构抗风分析原理及应用[M]. 上海: 同济大学出版社, 2001.
[14] 全涌, 曹会兰, 顾明. 高层建筑横风向风效应研究综述[J]. 同济大学学报(自然科学版), 2010, 38(6): 810-818.
QUAN Yong, CAO Hui-lan, GU Ming. Cross-wind effect of high-rise buildings: state of art [J]. Journal of Tongji University (Natural Science), 2010, 38(6): 810-818.
[15] GB 50009-2012, 建筑结构荷载规范[S].
GB 50009-2012, Load code for the design of building structures [S].
[16] 冯煜, 陈小安, 谭惠文, 等. 风场作用下的定日镜轻量化设计[J]. 中南大学学报(自然科学版), 2015, 46(5): 1915-1922.
FENG Yu, CHEN Xiao-an, TAN Hui-wen, et al. Lightweight design of heliostat in wind field [J]. Journal of Central South University (Science and Technology), 2015, 46(5): 1915-1922.
[17] Versteeg H K, Malalasekera W. An introduction to computational fluid dynamics: the finite volume method [M]. Second Edition. New Jersey: Prentice Hall, 2007.
[18] Owen J S, Eccles B J, Choo B S, et al. The application of auto-regressive time series modelling for the time-frequency analysis of civil engineering structures [J]. Engineering Structures, 2001, 23: 521-536.
[19] 李锦华, 李春祥. 土木工程随机风场数值模拟研究的进展[J]. 振动与冲击, 2008, 27(9): 116-125.
LI Jin-hua, LI Chun-xiang. Development of numerical simulations for stochastic wind fields in civil engineering [J]. Journal of Vibration and Shock, 2008, 27(9): 116-125.
PDF(1884 KB)

Accesses

Citation

Detail

Sections
Recommended

/