Taylor series-LQG control for time delay compensation of magneto-rheological semi-active suspension

CHEN Shi’an1,2,ZU Guanghao2,YAO Ming2,ZHANG Xiaona2

Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (8) : 190-196.

PDF(930 KB)
PDF(930 KB)
Journal of Vibration and Shock ›› 2017, Vol. 36 ›› Issue (8) : 190-196.

Taylor series-LQG control for time delay compensation of magneto-rheological semi-active suspension

  • CHEN Shi’an1,2,ZU Guanghao2,YAO Ming2,ZHANG Xiaona2
Author information +
History +

Abstract

A Taylor series-LQG approach for magneto-rheological semi-active suspension system was presented to compensate time delay.First,the reason for the failure of conventional combination Taylor series with LQG control to compensate time delay was uncovered by theoretical derivations and a new Taylor series-LQG control for time delay compensation was developed to satisfy LQR operating conditions.Second,considering Taylor series amplifying the control and balance between performance and cost of magneto-rheological damper,a strategy was presented to determine the range of the actual semi-active control force so as to satisfy 99% control demand.Finally,compared with Smith Predictor-LQG (SLQG) control,simulation results verify the proposed approach can obtain better control effect for time delay compensation of a magneto-rheological semi-active suspension system.

Key words

magneto-rheological semi-active suspension / time delay compensation / LQG / Taylor series

Cite this article

Download Citations
CHEN Shi’an1,2,ZU Guanghao2,YAO Ming2,ZHANG Xiaona2. Taylor series-LQG control for time delay compensation of magneto-rheological semi-active suspension[J]. Journal of Vibration and Shock, 2017, 36(8): 190-196

References

[1] Vanavil B, Chaitanya K Krishna, Rao A Seshagiri. Improved PID controller design for unstable time delay processes based on direct synthesis method and maximum sensitivity [J]. International Journal of Systems Science, 2015, 46(8): 1349-1366.
[2] WANG Ya-xiong, Yu, Duck-hyun, Kim Young-bae. Robust Time-Delay Control for the DC-DC Boost Converter [J]. IEEE Transactions on Industrial Electronics, 2013, 61(9): 4829-4837.
[3] Ngoduy D. Linear stability of a generalized multi-anticipative car following model with time delays [J]. Communications in Nonlinear Science and Numerical Simulation, 2015, 22(1-3): 420-426.
[4] Ferruzzo Correa D-P, Wulff C, Piqueira, J. Symmetric bifurcation analysis of synchronous states of time-delayed coupled Phase-Locked Loop oscillators [J]. Communications in Nonlinear Science and Numerical Simulation, 2015, 22(1-3): 793-820.
[5] PAN Hui-hui, SUN Wei-chao, GAO Hui-jun, et al. Robust adaptive control of non-linear time-delay systems with saturation constraints [J]. Iet Control Theory and Applications, 2015, 9(1): 103-113.
[6] LIU Zhou-yang, LIN Chong, CHEN Bing. A neutral system approach to stability of singular time-delay systems [J]. Journal of the Franklin Institute-Engineering and Applied Mathematics, 2014, 351(10): 4939-4948.
[7] 董小闵,余淼,廖昌荣,等. 具有非线性时滞的汽车磁流变悬架系统自适应模糊滑模控制[J]. 振动与冲击,2009,28(11):56-60.
DONG Xiao-min, YU Miao, LIAO Chang-rong, et al. Adaptive fuzzy sliding mode control for magneto-rheological suspension system considering nonlinearity and time delay [J]. Journal of vibration and shock, 2009, 28(11):56-60.
[8] 申永军,祁玉玲,杨绍普,等. 含时滞的单自由度半主动悬架系统的动力学分析[J]. 振动与冲击,2012,31(24):38-40.
SHEN Yong-jun, QI Yu-ling, YANG Shao-pu, et al. Dynamic analysis of a SDOF semi-active suspension system with time-delay [J]. Journal of vibration and shock, 2012, 31(24):38-40.
[9] 陈 龙,汪若尘,江浩斌,等. 含时滞半主动悬架及其控制系统[J]. 机械工程学报,2006,42(1):131-132.
CHEN Long, WANG Ruo-chen, JIANG Hao-bin, et al. Time delay on semi-active suspension and control system [J]. Journal of Mechanical Engineering, 2006, 42(1):131-132.
[10] 朱茂飞,陈无畏,祝  辉. 基于磁流变减振器的半主动悬架时滞变结构控制[J]. 机械工程学报,2010,46(12):113-120.
ZHU Mao-fei, CHEN Wu-wei, ZHU Hui. Time-delay variable structure control for semi-active suspension based on magneto-rheological damper [J]. Journal of Mechanical Engineering, 2010, 46(12), 113-120.
[11] 欧林林,张卫东,顾诞英. PID控制作用下一阶时滞系统的鲁棒稳定性分析[J]. 上海交通大学学报,2006,11:67-69.
OU Lin-lin, ZHANG Wei-dong, GU Dan-ying. The Robustness Analysis of First- order Systems with Time Delay under PID Control [J]. Journal of Shanghai Jiaotong University, 2006, 11:67-69.
[12] 赵青,刘媛媛,张卫东. 时滞反向响应过程的数字控制设计方法[J]. 上海交通大学学报,2007,41(8):1311-1319.
ZHAO Qing, LIU Yuan-yuan, ZHANG Wei-dong. A Digital Control Method for Inverse Response Processes with Time Delay [J]. Journal of Shanghai Jiaotong University, 2007, 41(8):1311-1319.
[13] 田石柱,李暄,欧进萍. 结构主动控制系统时间滞后测量与补偿. [J]. 地震工程与工程振动,2000,20(4):101-105.
TIAN Shi-zhu, Ll Xuan, OU Jin-Ping. Methods for measuring and compensating time delay of active structural control system [J]. Earthquake Engineering and Engineering Vibration, 2000, 20(4):101-105.
[14] 陈士安,邱峰,何仁,等. 一种确定车辆悬架 LQG控制加权系数的方法[J]. 振动与冲击,2008,27(2):65-68.
CHEN Shi-an, QIU Feng, HE Ren. A method for choosing weights in a suspension LQG controller [J]. Journal of vibration and shock, 2008, 27(2):65-68.
[15] 刘韶庆. 磁流变可调阻尼减振器的特性研究 [D]. 镇江,江苏大学,2007.
LIU Shao-qing. Studies on the Charaeteristics of Magnetorheological Adjustable Damper [D]. Zhenjiang, Jiangsu University, 2007.
[16] Grimble, M J. LQG predictive optimal control for adaptive applications [J]. Automatica, 1990, 26(6):949-961.
[17] Control System Toolbox Function LQR/LQG Design [M]. Mathworks Inc, 2009.
[18] 陈杰平. 基于磁流变减振器的汽车半主动悬架设计与控制研究  [D]. 合肥,合肥工业大学,2010.
CHEN Jie-ping. Research on design and control of automotive semiactive suspension based on magneto-rheological damper [D]. Hefei, HeFei University of Technology, 2010.
[19] 余志生. 汽车理论[M]. 北京:机械工业出版社,2004.
YU Zhi-shen. Automobile theory [M]. Beijing: China Machine Press, 2004.
[20] 赵剡水,周孔亢,李仲兴,等. 磁流变减振器半主动悬架的系统时滞 [J]. 机械工程学报,2009,45(7):221-227.
ZHAO Yan-shui, ZHOU Kong-kang, LI Zhongxing, et al. Time lag of magnetorheological damper semi-active suspensions [J]. Journal of Mechanical Engineering, 2009, 45 (7):221-227.
PDF(930 KB)

387

Accesses

0

Citation

Detail

Sections
Recommended

/