Seismic control of longperiod bridge structures using particle dampers

LUO Zhenyuan1, YAN Weiming1,XU Wweibing1, ZHOU Daxing2

Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (10) : 1-7.

PDF(2560 KB)
PDF(2560 KB)
Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (10) : 1-7.

Seismic control of longperiod bridge structures using particle dampers

  • LUO Zhenyuan1, YAN Weiming1,XU Wweibing1, ZHOU Daxing2
Author information +
History +

Abstract

In order to study the efficiency and mechanism of the vibration control of particle dampers in longperiod bridge structures, a 1/20scale bridge model was designed according to a typical asymmetric selfanchored suspension bridge with a singletower, and a multilayer compartmentalparticle damper applied to the scaled test model was proposed. Corresponding shaking table tests of the scaled model with and without particle dampers were conducted. The experimental results show that the multilayer particle damper proposed does not show the phenomenon of particle accumulation in the experiments, and it has a good damping effect on the longitudinal seismic responses of the main beam of the scaled model bridge. It can dramatically reduce the displacement responses and acceleration root mean square responses of the main beam. This type of damper can significantly increase the equivalent damping ratio to reduce the longitudinal vibration of the main beam (in the low frequency vibration direction), and its has a significant tuning effect on the fundamental longitudinal vibration frequency of the main beam; The multilayer compartmental particle damper can effectively control the lowfrequency dynamic responses of longperiod bridges and can be applied to the seismic control of longperiod engineering structures.

Key words

multilayer compartmental particle damper, self-anchored suspension bridges / shaking table test / seismic control / long-period structure

Cite this article

Download Citations
LUO Zhenyuan1, YAN Weiming1,XU Wweibing1, ZHOU Daxing2. Seismic control of longperiod bridge structures using particle dampers[J]. Journal of Vibration and Shock, 2018, 37(10): 1-7

References

 [1] 闫维明,黄韵文,何浩祥,等. 颗粒阻尼技术及其在土木工程中的应用展望[J]. 世界地震工程,2010, 26(04): 18-24.
 [2] 鲁正,吕西林,闫维明. 颗粒阻尼技术研究综述[J]. 振动与冲击,2013, 32(07): 1-7.
 [3] Liu W, Tomlinson G R, Rongong J A. The dynamic characterisation of disk geometry particle dampers[J]. Journal of Sound & Vibration, 2005, (280): 849-861.
 [4] Hollkamp J J, Gordon R W. Experiments with particle damping[J]. 1998, 3327: 2-12.
 [5] 鲁正,张鼎昌,吕西林. 采用颗粒调谐质量阻尼器的钢框架结构振动台试验研究[J]. 建筑结构学报,2017, 38(04): 10-17.
 [6] 鲁正,吕西林,闫维明. 颗粒阻尼器减震控制的试验研究[J]. 土木工程学报,2012, 45(S1): 243-247.
 [7] 许维炳,闫维明,王瑾,等. 调频型颗粒阻尼器与高架连续梁桥减震控制研究[J]. 振动与冲击,2013, 32(23): 94-99.
 [8] Yan W, Xu W, Wang J, et al. Experimental Research on the Effects of a Tuned Particle Damper on a Viaduct System under Seismic Loads[J]. JOURNAL OF BRIDGE ENGINEERING, 2014, 19(3).
 [9] 杨智春,李泽江. 颗粒碰撞阻尼动力吸振器的设计及实验研究[J]. 振动与冲击,2010, 29(06): 69-71.
[10] 李忠献. 工程结构试验理论与技术[M]. 天津: 天津大学出版社,2004.
[11] 章关永. 桥梁结构试验[M]. 北京: 北京人民交通出版社,2002.
[12] Goldshtein A, Shapiro M, Moldavsky L, et al. Mechanics of collisional motion of granular materials. Part 2. Wave propagation through vibrofluidized granular layers[J]. Journal of Fluid Mechanics, 1995, 287(287): 349-382.
[13] 李爱群. 工程结构减震控制[M]. 北京: 机械工业出版社,2008.
[14] 闫维明,谢志强,张向东,等. 隔舱式颗粒阻尼器在沉管隧道中的减震控制试验研究[J]. 振动与冲击,2016, 35(17): 7-12, 25.
[15] Soong T T D G F. Passive Energy Dissipation Systems in Structural Engineering[M]. Wiley & Sons: Incorporated, John, 1997.
[16] JTG/T B02-01-2008. 公路桥梁抗震设计细则[S]. 北京: 人民交通出版社, 2008.
[17] GB 50011-2010. 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010.
[18] 李晰,张德义,闫维明,等. 基于环境激励的钢管混凝土拱桥工作模态识别及修正[J]. 工程力学,2013, 30(09): 81-88.
[19] 方海,刘伟庆,王仁贵. 自锚式悬索桥结构纵向消能减震设计方法研究[J]. 地震工程与工程振动,2006(03): 222-224.
 
PDF(2560 KB)

Accesses

Citation

Detail

Sections
Recommended

/