A time step’s automatic adjustment method with load synchronous variation

LI Bin1. TANG Xiao-wei1.

Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (11) : 5-11.

PDF(780 KB)
PDF(780 KB)
Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (11) : 5-11.

A time step’s automatic adjustment method with load synchronous variation

  • LI Bin1   TANG  Xiao-wei1
Author information +
History +

Abstract

To improve the numerical calculation efficiency, aiming at errors caused by time step in structural dynamic time history analysis, a relationship between time step and relative error was proposed to realize the time step automatic adjustment, satisfy target error limits, and enrich the time adaptive theory. The effectiveness of this method was validated through comparing the calculating result with the analytical solution to an example. It was shown that in local area, the faster the change of external load, the smaller the corresponding adaptive time step; the method can effectively solve problems of calculation being divergent or interrupted due to improper setting of time step in numerical dynamic computations under impact load, vibration load, explosion load or seismic load.

Key words

 time adaptive theory / time step / calculation efficiency / computation accuracy

Cite this article

Download Citations
LI Bin1. TANG Xiao-wei1.. A time step’s automatic adjustment method with load synchronous variation[J]. Journal of Vibration and Shock, 2018, 37(11): 5-11

References

[1] 王 林, 蔡改改, 高冠琪. 基于改进MP的稀疏表示快速算法及其滚动轴承故障特征提取应用[J]. 振动与冲击, 2017, 36(3): 176-182.
Wang Lin, Cai Gaigai, Gao Guanqi. Fast sparse representation algorithm based on improved MP and its applications in fault feature extraction of rolling bearings[J]. Journal of Vibration and Shock, 2017, 36(3): 176-182.(in Chinese)
[2] 祝志文, 黄 炎. 大跨度桥梁脉动风场模拟的插值算法[J]. 振动与冲击, 2017, 36(7): 156-163.
Zhu Zhiwen, Huang Yan. Interpolation algorithm for fluctuating wind field simulation of long-span bridges[J]. Journal of Vibration and Shock, 2017, 36(7): 156-163.(in Chinese)
[3] 张 斌, 雷晓燕, 罗雁云. 基于Newmark格式的车辆-轨道耦合迭代过程的改进算法[J]. 中南大学学报(自然科学版), 2016, 47(1): 298-306.
Zhang Bin, Lei Xiaoyan, Luo Yanyun. Improved algorithm of iterative process for vehicle-track coupled system based on Newmark formulation[J]. Journal of Central South University (Science and Technology), 2016, 47(1): 298-306.
[4] 张 弛, 贾丽媛, 王加阳. 改进的混合免疫算法在约束函数优化中的应用[J]. 中南大学学报(自然科学版), 2016, 47(6): 1940-1946.
Zhang Chi, Jia Liyuan, Wang Jiayang. An improved hybrid immune algorithm for multimodal optimization[J]. Journal of Central South University (Science and Technology), 2016, 47(6): 1940-1946.
[5] Sloan S W, Abbo A J. Biot consolidation analysis with automatic time stepping and error control Part 2: Applications[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(6): 493-529.
[6] Zienkiewicz O C, Xiey M. A simple error estimator and adaptive time stepping procedure for dynamic analysis[J]. Earthquake Engineering & Structural Dynamics, 1991, 20(9): 871-887.
[7] Zeng L F, Wiberg N E, Li X D. A posteriori local error estimation and adaptive time-stepping for newmark integration in dynamic analysis[J]. Earthquake Engineering & Structural Dynamics, 1992, 21(7): 555-571.
[8] Wiberg N E, Li X D. A post-processing technique and an a posteriori error estimate for the newmark method in dynamic analysis[J]. Earthquake Engineering & Structural Dynamics, 1993, 22(6): 465-489.
[9] Tang G, Alshawabkeh A N, Mayes M A. Automatic time stepping with global error control for groundwater flow models[J]. Journal of Hydrologic Engineering, 2008, 13(9): 803-810.
[10] Kavetski D, Binning P, Sloan S W. Adaptive backward Euler time stepping with truncation error control for numerical modelling of unsaturated fluid flow[J]. International Journal for Numerical Methods in Engineering, 2002, 53(6): 1301-1322.
[11] 王开加, 程建生, 段金辉. 基于时间步长自适应技术的海上浮基风电平台绕流数值模拟分析[J]. 船舶与海洋工程, 2013, 2: 52-57.
Wang Kaijia, Cheng Jiansheng, Wang Jingquan. Numerical simulation analysis of offshore floating wind power generation platform based on time step adaptive method[J]. Naval Architecture and Ocean Engineering, 2013, 2: 52-57. (in Chinese)
[12] 毛卫南, 刘建坤. 自适应时间步长法在土体冻结水热耦合模型中的应用[J].  防灾减灾工程学报, 2014, 34(4): 510-516.
Mao Weinan, Liu Jiankun. Application of adaptive time step method to water-heat coupling model of soil freezing[J]. Journal of Disaster Prevention and Mitigation Engineering, 2014, 34(4): 510-516. (in Chinese)
[13]Tang X W, Zhang X W, Uzuoka R. Novel adaptive time stepping method and its application to soil seismic  liquefaction analysis[J]. Soil Dynamics and Earthquake Engineering, 2015, 71(4): 100-113.
[14]Zhang X W, Tang X W, Uzuoka R. Numerical simulation of 3D liquefaction disasters using an automatic time stepping method[J]. Natural Hazards, 2015, 77(2): 1275-1287.
[15]Naveed A, Volker J. Adaptive time step control for higher order variational time discretizations applied to convection–diffusion–reaction equations[J]. Comput. Methods Appl. Mech. Engrg, 2015, 285: 83–101.
[16]Vahid Z R, Shen Y X. Massive parallelization of the phase field formulation for crack propagation with time adaptivity. Comput[J]. Methods Appl. Mech. Engrg, 2016, 312: 224–253.
[17]Marc L, Serge P, Kristoffer G Z. Preface to the special issue on error estimation and adaptivity for nonlinear and time-dependent problems[J]. Comput. Methods Appl. Mech. Engrg, 2015, 288: 1.
[18] Brown MJ M B. The discretization error of Newmark’s methods for numerical intergration in structural dynamics. Earthquake Engineering & Structural Dynamics, 1985, 13: 43-61.
[19]Lin Y H, Trethewey M W. Finite element analysis of elastic beams subjected to moving dynamic loads[J]. Journal of Sound and Vibration, 1990, 136(2): 323-342.
[20] Fryba L. Vibration of solids and structures under moving loads[M]. Thomas Telford: London, 1999.
PDF(780 KB)

397

Accesses

0

Citation

Detail

Sections
Recommended

/