Ultra-wide bandgap properties of 3D diamond lattice phonon crystal

JIANG Weifeng,YIN Ming,XIANG Zhaowei,XIE Luofeng,YIN Guofu

Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (13) : 190-194.

PDF(1300 KB)
PDF(1300 KB)
Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (13) : 190-194.

Ultra-wide bandgap properties of 3D diamond lattice phonon crystal

  • JIANG Weifeng,YIN Ming,XIANG Zhaowei,XIE Luofeng,YIN Guofu
Author information +
History +

Abstract

To get a wide bandgap, a 3D phonon crystal structure was obtained by placing dielectric spheres at diamond lattice points and connecting nearest-neighbor spheres with dielectric rods. Its energy band structures, vibration modes, and transmission spectra were calculated using the finite element method. The numerical calculation results showed that the diamond lattice phonon crystal structure displays an ultra-wide elastic wave bandgap with a relative bandgap width of 144.5%; the resonance of dielectric spheres and connecting rods is the main reason to cause the ultra-wide bandgap; variation of dielectric spheres and connecting rods’ diameters significantly affects bandgap boundary and bandgap width. Furthermore, this structure’s photonic energy band structure was calculated using the plane wave expansion method. The results showed that this diamond lattice sphere-rod structure not only has an ultra-wide phonon crystal bandgap, but also acquires a photonic bandgap with a definite width; this 3D diamond lattice phonon crystal structure can be applied in design and development of materials for vibration reduction and noise suppressing, and new type acousto-optic devices. 

Key words

phonon crystal / elastic wave bandgap / finite element (FE) method / photonic bandgap

Cite this article

Download Citations
JIANG Weifeng,YIN Ming,XIANG Zhaowei,XIE Luofeng,YIN Guofu. Ultra-wide bandgap properties of 3D diamond lattice phonon crystal[J]. Journal of Vibration and Shock, 2018, 37(13): 190-194

References

[1] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical review letters, 1987, 58(20): 2059.
[2] John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical review letters, 1987, 58(23): 2486.
[3] Kushwaha M S, Halevi P, Dobrzynski L, et al. Acoustic band structure of periodic elastic composites[J]. Physical review letters, 1993, 71(13): 2022.
[4] 温熙森,温激鸿,郁殿龙,等. 声子晶体[M]. 北京:国防工业出版社,2009
Wen X S, Wen J H, Yu D L, et al. Phononic Crystals[M]. Beijing: National Defense Industry Press, 2009
[5] Fan L, Chen Z, Zhang S, et al. An acoustic metamaterial composed of multi-layer membrane-coated perforated plates for low-frequency sound insulation[J]. Applied Physics Letters, 2015, 106(15): 151908.
[6] Maldovan M. Sound and heat revolutions in phononics.[J]. Nature, 2013, 503(7475): 209.
[7] Yu D, Wen J, Zhao H, et al. Vibration reduction by using the idea of phononic crystals in a pipe-conveying fluid[J]. Journal of Sound & Vibration, 2008, 318(1): 193-205.
[8] 刘江伟,郁殿龙,温激鸿,等. 周期附加质量充液管路减振特性研究[J]. 振动与冲击, 2016, 35(6): 141-145. 
LIU Jiang-wei, YU Dian-long, WEN Ji-hong, et al. The vibration reduction properties research of pipe conveying fluid with periodically added mass[J]. Journal of vibration and shock, 2016, 35(6): 141-145.
[9] 张印,尹剑飞,温激鸿,等. 基于质量放大局域共振型声子晶体的低频减振设计[J]. 振动与冲击, 2016, 35(17): 26-32.
ZHANG Yin, YIN Jian-fei, WEN Ji-hong, et al. Low frequency vibration reduction design based on an inertial amplification locally resonant phononic crystals[J]. Journal of vibration and shock, 2016, 35(17): 26-32.
[10] 张思文,吴九汇. 局域共振复合单元声子晶体结构的低频带隙特性研究[J]. 物理学报, 2013, 62(13): 134302.
Zhang Shi-wen, Wu Jiu-hui. Low-frequency band gaps in phononic crystals with composite locally resonant structures[J] Acta Physica Sinica, 2013, 62(13) : 134302.
[11] Wang Z, Zhang Q, Zhang K, et al. Tunable Digital Metamaterial for Broadband Vibration Isolation at Low Frequency[J]. Advanced Materials, 2016, 28(44): 9857-9861.
[12] Cheng Z, Shi Z. Vibration attenuation properties of periodic rubber concrete panels[J]. Construction & Building Materials, 2014, 50:257-265.
[13] Yu K, Chen T, Wang X. Large band gaps in two-dimensional phononic crystals with neck structures[J]. Journal of Applied Physics, 2013, 113(13): 134901.
[14] Wang Y F, Wang Y S, Su X X. Large bandgaps of two-dimensional phononic crystals with cross-like holes[J]. Journal of Applied Physics, 2011, 110(11): 113520.
[15] Wang Y F, Wang Y S. Complete bandgaps in two-dimensional phononic crystal slabs with resonators[J]. Journal of Applied Physics, 2013, 114(4): 043509.
[16] 刘荣强,赵浩江,李长洲,等. 三组元栅格板的振动特性研究[J]. 振动与冲击, 2016, 35(15): 53-57.
LIU Rong-qiang, ZHAO Hao-jiang, LI Chang-zhou, et al. Research on the vibration characteristics of three-component grid plates[J]. Journal of vibration and shock, 2016, 35(15): 53-57.
[17] 赵浩江,刘荣强,郭宏伟,等. 复式类正方格子声子晶体薄板的带隙研究[J]. 振动与冲击, 2015, 34(19): 171-174.
ZHAO Hao-jiang, LIU Rong-qiang, GUO Hong-wei, et al. Research on Band Gaps of Thin Phononic Crystal Plates With Complex Square-like Lattice[J]. Journal of vibration and shock, 2015, 34(19): 171-174.
[18] Chen Y, Yao H, Wang L. Acoustic band gaps of three-dimensional periodic polymer cellular solids with cubic symmetry[J]. Journal of Applied Physics, 2013, 114(4): 043521.
[19] Matlack K H, Bauhofer A, Krödel S, et al. Composite 3D-printed metastructures for low-frequency and broadband vibration absorption[J]. Proceedings of the National Academy of Sciences, 2016: 201600171.
[20] Jiang H, Wang Y, Zhang M, et al. Locally resonant phononic woodpile: A wide band anomalous underwater acoustic absorbing material[J]. Applied Physics Letters, 2009, 95(10): 104101.
[21] Wu L Y, Chen L W. Acoustic band gaps of the woodpile sonic crystal with the simple cubic lattice[J]. Journal of Physics D: Applied Physics, 2011, 44(4): 045402.
[22] Delpero T, Schoenwald S, Zemp A, et al. Structural engineering of three-dimensional phononic crystals[J]. Journal of Sound and Vibration, 2016, 363: 156-165.
[23] Maldovan M, Thomas E L. Simultaneous complete elastic and electromagnetic band gaps in periodic structures[J]. Applied Physics B: Lasers and Optics, 2006, 83(4): 595-600.
[24] Maldovan M, Thomas E L. Simultaneous localization of photons and phonons in two-dimensional periodic structures[J]. Applied Physics Letters, 2006, 88(25): 251907.
[25] Papanikolaou N, Psarobas I E, Stefanou N. Absolute spectral gaps for infrared light and hypersound in three-dimensional metallodielectric phoxonic crystals[J]. Applied Physics Letters, 2010, 96(23): 231917.
[26] Ma T X, Wang Y S, Wang Y F, et al. Three-dimensional dielectric phoxonic crystals with network topology[J]. Optics express, 2013, 21(3): 2727-2732.
[27] Laude V, Beugnot J C, Benchabane S, et al. Simultaneous guidance of slow photons and slow acoustic phonons in silicon phoxonic crystal slabs[J]. Optics express, 2011, 19(10): 9690-9698.
[28] Amoudache S, Pennec Y, Djafari Rouhani B, et al. Simultaneous sensing of light and sound velocities of fluids in a two-dimensional phoxonic crystal with defects[J]. Journal of Applied Physics, 2014, 115(13): 134503.
[29] Maldovan M, Thomas E L. Diamond-structured photonic crystals[J]. Nature materials, 2004, 3(9): 593-600.
PDF(1300 KB)

Accesses

Citation

Detail

Sections
Recommended

/