Dynamic characteristics of a large-span steel space frame-glass composite floor

WANG Zhihao1,HUANG Youkun1,LI Xiaoke1,XU Ke2,Chen Yin1

Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (13) : 195-202.

PDF(2316 KB)
PDF(2316 KB)
Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (13) : 195-202.

Dynamic characteristics of a large-span steel space frame-glass composite floor

  • WANG Zhihao1,HUANG Youkun1,LI Xiaoke1,XU Ke2,Chen Yin1
Author information +
History +

Abstract

Ambient vibration tests for a large-span steel space frame-glass composite floor were conducted. The identified vertical dynamic characteristics of the floor were compared with its finite element (FE) model simulation results. Here, a sophisticated FE floor modeling method was proposed for vibration comfort evaluation. The study showed that a historic site protection visit building adopts large-span steel space frame-glass composite floor’s special open hole, cantilever and suspension etc. structure forms to make the site entrance visit area become the most unfavorable vibration position, there exist typical coupled vibrations among various floors; it is necessary to distinguish the large-span steel space frame-glass composite floor’s sophisticated FE model (in weak vibration state) from the load-bearing ultimate model (in strong vibration state)’s live load value; the actual stiffness contributions of structural layer floor and architectural surface to the whole floor system are simulated, and the modal damping ratio can be 2.78% ~ 2.98%; the effects of human-floor interaction on the whole floor system’s dynamic characteristics and response should be considered appropriately.

Key words

large-span steel space frame-glass composite floor / ambient vibration test / sophisticated FE model / dynamic characteristics / modal parameter identification

Cite this article

Download Citations
WANG Zhihao1,HUANG Youkun1,LI Xiaoke1,XU Ke2,Chen Yin1. Dynamic characteristics of a large-span steel space frame-glass composite floor[J]. Journal of Vibration and Shock, 2018, 37(13): 195-202

References

[1]  马伯涛, 张楠, 宋毛毛, 等. 大跨度楼盖运动场内人员舒适度实测分析研究[J]. 振动与冲击, 2015, 34(24): 164-169.
MA Bo-tao, ZHANG Nan, SONG Mao-mao, et al. Tests and questionaries to analyse the human comfort in long-span gymnasium[J]. Journal of Vibration and Shock, 2015, 34(24):164-169.
[2]  滕军, 李祚华, 幸厚冰, 等. 大跨楼板结构的车致竖向振动控制[J]. 振动与冲击, 2016, 35(11): 79-86.
TENG Jun, LI Zuo-hua, XING Hou-bing, et al. Vehicles induced vertical vibration control for a long-span stucture[J].
Journal of Vibration and Shock, 2016, 35(11): 79-86.
[3]  Nimmen K V, Lombaert G, Roeck, G D, et al. Vibration serviceability of footbridges: Evaluation of the current codes [J]. Engineering Structures, 2014, 59: 448-461.
[4]  华旭刚, 温青, 陈政清, 等. 大跨度双层曲线斜拉桥人致振动减振优化与实测验证[J]. 振动工程学报, 2016, 29(5): 822-830.
HUA Xu-gang, WEN Qing, CHEN Zheng-qing et al. Design and experimental validation of structural vibration control of a curved twin-deck cable-stayed bridge subject to pedestrians [J]. Journal of Vibration Engineering, 2016, 29(5): 822-830.
[5]  Wendell D, Varela R, Battista C. Control of vibrations induced by people walking on large span composite floor decks [J]. Engineering Structures, 2011, 33: 2485-2494.
[6]  谢伟平, 洪文林, 李霆. 某体育馆楼板振动舒适度研究[J]. 噪声与振动控制, 2010, 30(2): 80-83.
XIE Wei-ping, HONG Wen-lin, LI Ting. Study on comfortableness of a gymnasium under the condition of  floor vibration [J]. Noise and Vibration Control, 2010, 30(2): 80-83.
[7]  操礼林, 李爱群, 陈鑫, 等. 人群荷载下大型火车站房大跨楼盖振动舒适度控制研究[J]. 土木工程学报, 2010, 43(S1) : 334-340.
CAO Li-lin, LI Ai-qun, CHEN Xin, et al. Vibration serviceability control of a long span floor in large station room under crowd-induced excitation[J]. China Civil Engineering Journal, 2010, 43(S1):334-340.
[8]  吕佐超, 娄宇. 天津环渤海大饭店楼板结构振动舒适度设计[J]. 建筑结构, 2012, 42(9):66-69.
LV Zuo-chao, LOU Yu. Design of floor vibration comfort in
Tianjin Huan Bohai Hotel caused by human activity [J]. Building Structure, 2012, 42(9): 66-69.
[9]  An Q, Chen Z H, Ren Q Y, et al. Control of  human-induced vibration of an innovative CSBS–CSCFS [J]. Journal of Constructional Steel Research, 2015, 115: 359-371.
[10]  张志强, 马斐, 李爱群, 等. 大跨度钢桁架-压型钢板混凝土组合楼盖实测及舒适度参数分析[J]. 建筑结构学报, 2016, 37(6): 19-27.
ZHANG Zhi-qiang, MA Fei, LI Ai-qun, et al. Dynamic measurement and comfort parameter analysis of large span truss-corrugated steel deck RC composite floor [J]. Journal of Building Structures, 2016, 37(6): 19-27.
[11]  何卫, 谢伟平. 基于舒适度评价的大跨度车站结构精细化模型研究[J]. 土木工程学报, 2014, 47(1): 13-23.
HE Wei, XIE Wei-Ping. Study on sophisticated calculation model of large-span railway station structures based on vibration serviceability evaluation[J]. China Civil Engineering Journal, 2014, 47(1): 13-23.
[12]  王昌兴, 徐珂, 田立强. 洛阳隋唐城明堂遗址保护建筑结构设计[J]. 钢结构, 2011, 26(8): 26-31.
WANG Chang-xing, XU Ke, TIAN Li-qiang. Structural design of Mingtang for protection of the ruins of ancient building built in the Sui and Tang Dynasty in Luoyang City [J]. Steel Construction, 2011, 26(8): 26-31.
[13]  GB50009-2012. 建筑结构荷载规范[S]. 北京: 中国建筑工业出版社, 2012.
[14]  娄宇, 吕佐超, 黄健. 人行走引起的楼板振动舒适度设计[J]. 特种结构, 2011, 28(2): 1-4+29.
LOU Yu, LV Zuo-chao, HUANG Jian. Design of floor vibration comfort under human excitation. Special Structures, 2011, 28(2): 1-4+29.
[15]  何卫, 谢伟平, 刘隆. 人-板耦合系统动力特性研究[J]. 工程力学, 2013, 30(1): 295-300.
HE Wei, XIE Wei-ping, LIU Long. Study on dynamic  characteristics of human-floor interaction system [J]. Engineering Mechanics, 2013, 30(1): 295-300.
[16]  谢伟平, 马朝霞, 何卫. 大跨度楼盖结构自振频率与人致振动舒适度关系研究[J]. 武汉理工大学学报, 2012, 34(4):96-101.
XIE Wei-ping, MA Zhao-xia, HE Wei. Study on the relation
of natural frequency and vibration serviceability of large-span floor structures under crowed loading [J]. Journal
of Wuhan University of Technology, 2012, 34(4): 96-101.
[17]  高延安, 杨庆山, 王娟, 等. 环境激励下古建筑飞云楼动力性能分析[J]. 振动与冲击, 2015, 34(22):144-148+182.
GAO Yan-an, YANG Qing-shan, WANG Juan, et al. Dynamic performance of the ancient architecture of Feiyun
pavilion under the condition of environmental excitation [J].
Journal of Vibration and Shock, 2015, 34(22): 144-148+182.
[18]  韩建平, 李达文, 王飞行. 基于Hilbert-Huang变换和随机子空间识别的模态参数识别[J]. 地震工程与工程振动, 2010, 30(1): 53-59.
HAN Jian-ping, LI Da-wen, WANG Fei-xing. Modal parameter identification based on Hilbert-Huang transform and stochastic subspace identification [J]. Journal of Earthquake Engineering and Engineering Vibration, 2010, 30(1): 53-59.
[19]  茅建校, 王浩, 荀智翔. 大跨度斜拉桥模态参数识别时频方法对比研究[J]. 同济大学学报(自然科学版), 2016, 44(7): 996-1001.
MAO Jian-xiao, WANG Hao, XUN Zhi-xiang. Comparison study on modal parameter identification of large span cable stayed bridge with time-frequency method [J]. Journal of Tongji University (Natural Science), 2016, 44(7): 996-1001.
[20]  秦世强, 康俊涛, 孔凡. 桥梁工作模态分析中阻尼比识别的离散性研究[J]. 振动、测试与诊断, 2016, 36(1): 42-48+196.
QIN Shi-qiang, KANG Jun-tao, KONG Fan. Study on the
discreteness of damping ratio in modal analysis of Bridge [J]. Journal of Vibration, Measurement & Diagnosis, 2016, 36(1): 42-48+196.
[21]  应怀樵, 刘进明, 沈松. 半功率带宽法与INV阻尼计法求阻尼比的研究[J]. 噪声与振动控制, 2006, 4(2): 4-6.
YING Huai-jiao, LIU Jin-ming, SHEN Song. Half-Power bandwidth method and INV damping ratio solver study [J]. Noise and Vibration Control, 2006, 4(2): 4-6.
[22]  He X H, Hua X G, Chen Z Q, et al. EMD-based random decrement technique for modal parameter identification of an existing railway bridge [J]. Engineering Structures, 2011, 33(4): 1348-1356.
[23]  罗钧, 刘纲, 黄宗明. 基于随机减量法的非平稳激励下模态参数识别[J]. 振动与冲击, 2015, 34(21):19-24+64.
LUO Jun, LIU Gang, HUANG Zong-ming. Modal parametric identification under non-stationary excitation based on random decrement method [J]. Journal of Vibration and Shock, 2015, 34(21): 19-24+64.
[24]  Bai Y, Keller T. Modal parameter identification for a GFRP pedestrian bridge [J]. Composite Structures, 2008, 82(1): 90-100
PDF(2316 KB)

372

Accesses

0

Citation

Detail

Sections
Recommended

/