Dynamical analysis of a QZS vibration isolator with time-delay control

LI Donghai ZHAO Shougen He Yujin LI Tao

Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (13) : 49-55.

PDF(1526 KB)
PDF(1526 KB)
Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (13) : 49-55.

Dynamical analysis of a QZS vibration isolator with time-delay control

  • LI Donghai  ZHAO Shougen  He Yujin  LI Tao
Author information +
History +

Abstract

A quasi zero stiffness (QZS) vibration isolator can be realized through parallel connection of a positive stiffness and a negative one. Here, the dynamic features of a QZS vibration isolator composed of two oblique springs and a vertical spring under the simple harmonic excitation were studied. Introducing the linear displacement time-delay control strategy, the dynamic response characteristics of the system under the simple harmonic excitation were obtained with the averaging method. The first-order Lyapunov approximate stability theory and Routh–Hurwitz criterion were adopted to analyze the stability, jump phenomenon and Hopf bifurcation of the controlled system. The results showed that the time-delay control strategy can effectively improve the stability of the QZS vibration isolator; jump phenomenon and Hopf bifurcation can be avoided through choosing appropriate control parameters.

Key words

quasi zero stiffness (QZS) / vibration isolator / time-delay control / stability / Hopf bifurcation

Cite this article

Download Citations
LI Donghai ZHAO Shougen He Yujin LI Tao. Dynamical analysis of a QZS vibration isolator with time-delay control[J]. Journal of Vibration and Shock, 2018, 37(13): 49-55

References

 [1] Carrella A, Brennan M J, Waters T P, et al. Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness[J]. International Journal of Mechanical Sciences, 2012,55(1):22-29.
 [2] Ibrahim R A. Recent advances in nonlinear passive vibration isolators[J]. Journal of Sound & Vibration, 2008,314(3–5):371-452.
 [3] Liu C, Jing X, Daley S, et al. Recent advances in micro-vibration isolation[J]. Mechanical Systems & Signal Processing, 2015,s 56–57(1):55-80.
 [4] Yang J, Xiong Y P, Xing J T. Dynamics and power flow behaviour of a nonlinear vibration isolation system with a negative stiffness mechanism[J]. Journal of Sound & Vibration, 2012,332(1):167-183.
 [5] Shaw A D, Neild S A, Wagg D J. Dynamic analysis of high static low dynamic stiffness vibration isolation mounts[J]. Journal of Sound & Vibration, 2013,332(6):1437-1455.
 [6] Zhang J Z, Li D, Chen M J, et al. An Ultra-Low Frequency Parallel Connection Nonlinear Isolator for Precision Instruments[J]. Key Engineering Materials, 2004,257-258:231-238.
 [7] 彭献, 黎大志. 准零刚度隔振器及其弹性特性设计[J]. 振动、测试与诊断, 1997(4):44-46.
Peng X, Li D Z. Quasi-zero Stiffness Vibration Isolators and Design forTheir Elastic characteristics[J].Journal of Vibration, Measurement & Diagnosis, 1997(4):44-46 (in Chinese).
 [8] Zhang J Z, Shen D, Dan L I. Study on New Type Vibration Isolation System Based on Combined Positive and Negative Stiffness[J]. Nanoteohnology & Precision Engineering, 2004.
 [9] Carrella A, Brennan M J, Kovacic I, et al. On the force transmissibility of a vibration isolator with quasi-zero-stiffness[J]. Journal of Sound and Vibration, 2009,322(4–5):707-717.
[10] Carrella A, Brennan M J, Waters T P. Optimization of a quasi-zero-stiffness isolator[J]. Journal of Mechanical Science and Technology, 2007,21(6):946-949.
[11] Carrella A. Passive vibration isolators with high-static-low-dynamic-stiffness[D]. VDM Verlag Dr. Müller, 2008.
[12] Carrella A, Brennan M J, Waters T P. Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic[J]. Journal of Sound and Vibration, 2007,301(3–5):678-689.
[13] Xu D, Yu Q, Zhou J, et al. Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic[J]. Journal of Sound & Vibration, 2013,332(14):3377-3389.
[14] Cao Q, Wiercigroch M, Pavlovskaia E E, et al. The limit case response of the archetypal oscillator for smooth and discontinuous dynamics[J]. International Journal of Non-Linear Mechanics, 2008,43(6):462-473.
[15] Brennan M J, Kovacic I, Carrella A, et al. On the jump-up and jump-down frequencies of the Duffing oscillator[J]. Journal of Sound & Vibration, 2008,318(4):1250-1261.
[16] Cao Q, Wiercigroch M, Pavlovskaia E E, et al. Archetypal oscillator for smooth and discontinuous dynamics.[J]. Physical Review E, 2006,74(4 Pt 2):159-163.
[17] Kovacic I, Brennan M J, Lineton B. On the resonance response of an asymmetric Duffing oscillator[J]. International Journal of Non-Linear Mechanics, 2008,43(9):858-867.
[18] Nbendjo B R N, Salissou Y, Woafo P. Active control with delay of catastrophic motion and horseshoes chaos in a single well Duffing oscillator[J]. Chaos Solitons & Fractals, 2005,23(3):809-816.
[19] Nbendjo B R N, Tchoukuegno R, Woafo P. Active control with delay of vibration and chaos in a double-well Duffing oscillator[J]. Chaos Solitons & Fractals, 2003,18(2):345-353.
[20] Zhao Y Y, Xu J. Effects of delayed feedback control on nonlinear vibration absorber system[J]. Journal of Sound & Vibration, 2007,308(1):212-230.
[21] Huang S J, Huang K S, Chiou K C. Development and application of a novel radial basis function sliding mode controller[J]. Mechatronics, 2003,13(4):313-329.
[22] Zhao Y, Xu J. Effects of delayed feedback control on nonlinear vibration absorber system[J]. Journal of Sound & Vibration, 2007,308(1):212-230.
[23] 刑誉峰, 李敏. 工程振动基础[M]. 北京航空航天大学出版社, 2011.
Xing Y F, Li M. Foundation of Engineering Vibration[M]. Beijing: Beihang University Press, 2011 (in Chinese).
[24] Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York[J]. 1983.
[25] 王高雄. 常微分方程.第3版[M]. 2013.
Wang G X, Ordinary Differential Equation[M]. 3rd ed. Beijing: High Education Press. 2013(in Chinese)
[26] Hu H, Dowell E H, Virgin L N. Resonances of a Harmonically Forced Duffing Oscillator with Time Delay State Feedback[J]. Nonlinear Dynamics, 1998,15(4):311-327.
[27] Wang Y, Li S, Cheng C, et al. Dynamic Analysis of a High-Static-Low-Dynamic-Stiffness Vibration Isolator with Time-Delayed Feedback Control[J]. Shock & Vibration, 2015,2015:1-19.
[28] Ho C., Lang Z., Billings S. A., 2014, Design of vibration isolators by exploiting the beneficial effects of stiffness and damping nonlinearities, Journal of Sound and Vibration Vol.333 pp.2489– 2504.
 
PDF(1526 KB)

607

Accesses

0

Citation

Detail

Sections
Recommended

/