Load model for a single pedestrian

XIE Wei-Ping1,ZHANG Tao1,HE Wei2,FENG Jin-Peng1

Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (14) : 214-220.

PDF(2254 KB)
PDF(2254 KB)
Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (14) : 214-220.

Load model for a single pedestrian

  • XIE Wei-Ping1,ZHANG Tao1,HE Wei2,FENG Jin-Peng1
Author information +
History +

Abstract

For large span lightweight structures, the humanstructure vertical interaction is significant, so that a more precise walking load model is needed to predict the humaninduced vibration more accurately. An ASMD model II which consist of a single degree of freedom spring mass damping (SMD) system and an internal actuator was built and verified by experiments. The results show that when the natural frequency of a structure falls into the subharmonic resonance region, the impact of sub harmonic component, should be considered, otherwise, the calculation results will incline to be small. When the natural frequency of the structure falls into the mainharmonic resonance region, a pure moving force model will be conservative in its predictions as it does not consider the interaction between the pedestrian and the moving bridge surface. In contrast, the ASMD model II can better predict the humaninduced vertical responses of the structure.

Key words

pedestrian load model / interaction / actuator / subharmonic components / experimental verification

Cite this article

Download Citations
XIE Wei-Ping1,ZHANG Tao1,HE Wei2,FENG Jin-Peng1. Load model for a single pedestrian[J]. Journal of Vibration and Shock, 2018, 37(14): 214-220

References

[1]  Kerr C, Bishop M. Human induced loading on flexible staircases [J]. Engineering Structures, 2001, 23(1): 37-45.
[2]  Racic V, Pavic A, Brownjohn J. Experimental identification and analytical modelling of human walking forces: Literature review [J]. Journal of Sound & Vibration, 2009, 326(1/2): 1-49.
[3]  Živanović S, Pavić A, Reynolds P. Probability-based prediction of multi-mode vibration response to walking excitation [J]. Engineering Structures, 2007, 29(6): 942-954.
[4]  Brownjohn J, Pavic A, Omenzetter P. A spectral density approach for modelling continuous vertical forces on pedestrian structures due to walking [J]. Canadian Journal of Civil Engineering, 2004, 31(1): 65-77.
[5]  谢伟平, 何卫, 艾康伟. 车站结构人行荷载特性研究[J]. 工程力学, 2012, 29(12): 256-264.
Xie Weiping, He Wei, Ai Kangwei. Study on characteristics of pedestrian loads of railway station structures [J]. Engineering Mechanics, 2012, 29(12): 256-264.
[6]  陈隽, 王浩祺, 彭怡欣. 行走激励的傅里叶级数模型及其参数的实验研究[J]. 振动与冲击, 2014, 33(8):11-15.
Chen Jun, Wang Hao-qi, Peng Yi-xin. Experimental investigation on Fourier-series model of walking load and its coefficients [J]. Journal of Vibration and Shock, 2014, 33(8): 11-15.
[7]  陈隽, 彭怡欣, 王玲. 基于步态分析技术的三向单足落步荷载曲线试验建模[J]. 土木工程学报, 2014, 47(3):79-87.
Chen Jun, Peng Yi-xin, Wang ling. Experimental investigation and mathematical modeling of single footfall load using motion capture technology [J]. China Civil Engineering Journal, 2014, 47(3): 79-87.
[8]  Pavic A, Reynolds P, Sachse R. Human-Structure Dynamic Interaction in Civil Engineering Dynamics: A Literature Review [J]. Shock & Vibration Digest, 2003, 35(1): 1-53.
[9]  Archbold P. Evaluation of novel interactive load models of crowd loading on footbridges[C].Proceeding of 4th Symposium on Bridge and Infrastructure Research in Ireland, 2008, 35-44.
[10]  Kim S, Park S. Leg stiffness increases with speed to modulate gait frequency and propulsion energy [J]. Journal of Biomechanics, 2011, 44(7): 1253-1258.
[11]  秦敬伟, 杨庆山. 基于双足步行模型和反馈机制的人体-结构相互作用[J]. 建筑结构学报, 2014, 35(增刊1): 18-24.
Qin Jingwei, Yang Qingshan. Human-structure interaction based on bipedal walking model and feedback mechanism [J]. Journal of Building Structures, 2014, 35(S1): 18-24.
[12]  何卫, 谢伟平, 刘隆. 人-板耦合系统动力特性研究[J]. 工程力学, 2013, 30(1):295-300.
He Wei, Xie Wei-ping, Liu Long. Study on dynamic characteristics of human-floor interaction system [J]. Engineering Mechanics, 2013, 30(1): 295-300.
[13]  谢伟平, 鲁伟, 何卫. 人-板耦合系统动力响应及相互作用研究[J]. 武汉理工大学学报, 2015, 37(1):56-62.
Xie Wei-ping, Lu Wei, He Wei. Research on dynamic response and interaction of human-floor coupled system [J]. Journal of Wuhan University of Technology, 2015, 37(1): 56-62.
[14]  丁阳, 米仓. 随机人行激励模型改进及应用[J]. 振动与冲击, 2012, 31(20):56-60.
Ding Yang, Mi Cang. Improvement of stochastic walking excitation model and its application [J]. Journal of Vibration and Shock, 2012, 31(20): 56-60.
[15]  谢旭, 钟婧如, 张鹤, 等. 人-桥竖向耦合振动计算方法[J]. 振动与冲击, 2016, 35(5):108-114.
Xie Xu, Zhong Jing-ru, Zhang He, et al. Calculation method for human-bridge vertically coupled vibration [J]. Journal of Vibration and Shock, 2016, 35(5): 108-114.
[16]  Matsumoto Y, Griffin M. Mathematical models for the apparent masses of standing subjects exposed to vertical whole-body vibration [J]. Journal of Sound & Vibration, 2003, 260(3): 431-451.
[17]  Silva D, Brito F, Pimentel L. Modeling of crowd load in vertical direction using biodynamic model for pedestrians crossing footbridges [J]. Canadian Journal of Civil Engineering, 2013, 40(12): 1196-1204.
[18]  聂建国, 陈宇, 樊健生. 步行荷载作用下单跨人行桥振动的均方根加速度反应谱法[J]. 土木工程学报, 2010, 43(9): 109-116.
Nie Jianguo, Chen Yu, Fan Jiansheng. RMS acceleration response spectrum method for single-span footbridges under pedestrian load [J]. China Civil Engineering Journal, 2010, 43(9): 109-116.
[19]  Živanović S. Modelling Human Actions on Lightweight Structures: Experimental and Numerical Developments[C].  Matec Web of Conferences, 2015, 24:01005.
[20]  Dey P, Sychterz A, Narasimhan S, et al. Performance of Pedestrian-Load Models through Experimental Studies on Lightweight Aluminum Bridges[J]. Journal of Bridge Engineering, 2016, 21(8):C4015005.
PDF(2254 KB)

Accesses

Citation

Detail

Sections
Recommended

/