Model predictive flow control of wind turbine blades based on distributed flaps

MU An-le1,ZHANG Guang-xing1,LI Nai-lu2,ZOU A-pei1,WAN Qiang-qiang1,XU Jian-guo1

Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (14) : 79-85.

PDF(1161 KB)
PDF(1161 KB)
Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (14) : 79-85.

Model predictive flow control of wind turbine blades based on distributed flaps

  • MU An-le1,ZHANG Guang-xing1,LI Nai-lu2,ZOU A-pei1,WAN Qiang-qiang1,XU Jian-guo1
Author information +
History +

Abstract

A highaspectratio wind turbine blade is a slender flexible body. Its force and deformation are extremely complicated under the effects of aeroelastic coupling. How to reduce vibration and alleviate load under the complex interaction by using active control techniques is a key problem. Focusing on this problem, the wind turbine blade was simplified as a cantilever laminated composite plate with trailing edge flaps along the spanwise direction. An elastic deformation model was established by the RayleighRitz approach and an aeroelastic model was established by combinedly using the Theodorsenstriptheory for the aerodynamics. The blade flow control was realized by an active controller with the technique of Model Predictive Control (MPC). The simulation results show that the distributed trailing edge flaps under the regulation of MPC can effectively reduce the flapwise and twist vibrations. The flapwise vibrations can be reduced by about 15% and 30% at the central part and tip of the blade along spanwise direction respectively, the twist vibration by 70% at the 80% of the blade length along spanwise direction and the convergence time can be decreased by about 50%.

Key words

wind turbine / high-aspect-ratio blade / aero-elasticity / predictive control / vibration reduction and load alleviation

Cite this article

Download Citations
MU An-le1,ZHANG Guang-xing1,LI Nai-lu2,ZOU A-pei1,WAN Qiang-qiang1,XU Jian-guo1. Model predictive flow control of wind turbine blades based on distributed flaps[J]. Journal of Vibration and Shock, 2018, 37(14): 79-85

References

[1]  Thomas A,Lennart Soder,An overview of wind energy-status 2002 [J].Renewable and Sustainable Energy Reviews,2002,6(1):67-127.
[2]  Bing Feng Ng,Rafael Palacios,Eric C.et a.Aerodynamic load control in horizontal axis wind turbines with combined aeroelastic tailoring and trailing-edge flaps[J].Wind Energy,2015,19(1):243-263.
[3]  Hansen M,Sørensen J N,Voutsinas S G,et al.State of the art in wind turbine aerodynamics and aeroelasticity [J]. Progress in Aerospace Sciences,2006,42(4):285-330.
[4]  Andersen P B,Gaunaa M,Bak C,et al.Load alleviation on wind turbine blades using variable airfoil geometry[D].Wind Energy Department,Risø National Laboratory,2005.
[5]  Van Wingerden J W,Hulskamp A W,Barlas T,et al.On the proof of concept of a 'smart' wind turbine rotor blade for load alleviation [J].Wind Energy,2008,11(3):265-280.
[6] Van Wingerden J W,Anton Hulskamp,Barlas T,et al.Two-degree-of-freedom active vibration control of a prototyped “smart” rotor[J].IEEE Trans,2010,19:284-296.
[7]  Leonardo B,Niels K P.A smart rotor configuration with linear quadratic control of adaptive trailing edge flaps for active load alleviation[J].Wind Energy,2015,18:625-641.
[8] 郝礼书,乔志德,宋文萍,等.Gurney 襟翼用于风力机叶片翼型气动载荷控制的数值模拟研究[J].太阳能学报,2012,33(12):2059-2065.
    Hao Li-shu,Qiao Zhi-de,Song Wen-ping,et al.Numerical simulation of aerodynamic load control for blade airfoil of wind turbine using gurney flap[J],Acta Energiae Solaris Sinica,2012,33(12):2059-2065.
[9] 莫文威,李德源,夏鸿建,等.水平轴风力机柔性叶片多体动力学建模与动力特性分析[J].振动与冲击,2013,32(22):99-105.
    Mo Wen-wei,Li De-yuan,Xia Hong-jian,et al.Multibody dynamic modeling and dynamic characteristics analysis of flexible blades for a horizontal axis wind turbine[J],Journal of vibration and shock,2013,32(22):99-105.
[10] 李迺璐,穆安乐,Balas M J,等.基于B-L气动模型的旋转水平风力机叶片经典颤振稳定性分析[J].振动与冲击,2015,34(23):171-176.
    Li Nai-lu,Mu An-le,Balas M J,et al.Classical flutter stability of rotating horizontal wind turbine blades based on B-L aeroelastic model[J],Journal of vibration and shock,2016,34(23):171-176.
[11] 李德源,莫文威,夏鸿建,等.水平轴风力机柔性叶片气弹耦合分析[J].太阳能学报,2015,36(3):734-741.
    Li De-yuan,Mo Wen-wei,Xia Hong-jian,et al.The aeroelastic coupling analysis of flexible blades for a horizontal axis wind turbine[J],Acta Energiae Solaris Sinica,2015,36(3):734-741.
[12] Zhang M M,Tan B,Xu J Z.Parameter study of sizing and placement of deformable trailing edge flap on blade fatigue load reduction[J].Renewable Energy,2015,77:217-226.
[13] Zhang M M,Tan B,Xu J Z.Smart fatigue load control on the large-scale wind turbine blades using different sensing signals[J].Renewable Energy,2016,87(1):111-119.
[14] 刘廷瑞,于子晴.风力机叶片失速非线性颤振伺服气弹智能控制[J].中南大学学报(自然科学版),2016,47(10):3562-3569.
    Liu Ting-rui,Yu Zi-qing.Aeroservoelastic intelligent control for stall nonlinear flutter of wind turbine blade[J],Journal of Central south University (Science And Technology),22016,47(10):3562-3569.
[15] 李国勇.智能预测控制及其MATLAB实现[M].北京:电子工业出版社,2010.
    Li Guo-yong.Intelligent predictive control and MATLAB implementation[M],Beijing:Publishing House of Electronics Industry,2010.
[16] Jensen D W,Crawley E F,Dugundji J.Vibration of cantilevered graphite/epoxy plates with bending-torsion coupling[J].Journal of Reinforced Plastics and Composites,1982,1(3):254-269.
[17] Hollowell S J,Dugundji J.Aeroelastic flutter and divergence of stiffness coupled, graphite/epoxy cantilevered plates[J].Journal of Aircraf,1984,21(1):69-76.
[18] Ashton J E,Whitney J M.Theory of laminated plates [M].Technomic Publishing Co,1970,27-38.
[19] Theodorsen T H.General theory of aerodynamic instability and the mechanism of flutter[R].Report 496,NACA,1935.
PDF(1161 KB)

722

Accesses

0

Citation

Detail

Sections
Recommended

/