[1] 郭亮, 高宏力, 黄海凤, 等. 基于压缩感知理论的时变信号压缩技术[J]. 西南交通大学学报, 2015, 50(3): 511-516.
GUO Liang, GAO Hong-li, HUANG Hai-feng, et al. Time-varying signal compression technology based on compressed sensing [J]. Journal of Southwest Jiaotong University, 2015, 50(3): 511-516.
[2] 黄庆卿, 汤宝平, 邓蕾, 等. 机械振动无线传感网络数据分块无损压缩方法[J]. 仪器仪表学报, 2015, 36(7): 1605-1610.
HUANG Qing-qing , TANG Bao-ping, DENG Lei, et al. Data block-based lossless compression for machine vibration wairless sensor networks[J]. Chinese Journal of Scientific Instrument, 2015, 36(7):1605-1610.
[3] Candes E J, Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.
[4] 周俊, 伍星, 迟毅林, 等. 基于改进频域压缩感知的轴承复合故障欠定盲提取[J]. 振动与冲击, 2015, 34(14): 123-128.
ZHOU Jun, WU Xing, CHIN Yi-lin, et al. Underdetermined blind exaction for bearings complex failures based on improved frequency domain compressive sensing[J]. Journal of Vibration and Shock, 2015, 34(14): 123-128.
[5] 黄庆卿, 汤宝平, 邓蕾, 等. 无线传感器网路子带能量自适应数据压缩方法[J]. 仪器仪表学报, 2014, 35(9): 1998-2003.
HUANG Qing-qing, TANG Bao-ping, DENG Lei, et al. Subband energy adaptive data compression method for wairless sensor networks[J]. Chinese Journal of Scientific Instrument, 2014, 35(9): 1998-2003.
[6] 佟路, 王华, 洪荣晶. 基于压缩感知的回转支承振动监测信号采集方法[J]. 南京工业大学学报(自然科学版), 2015, 37(5): 48-52.
TONG Lu, WANG Hua, HONG Rong-jing. Slewing bearing vibration signal acquisition based on compressen sensing[J]. Journal of Nanjing Tech University, 2015, 37(5): 48-52.
[7] 王怀光, 张培林, 吴定海, 等. 基于提升小波的机械振动信号自适应压缩感知[J]. 中南大学学报(自然科学版), 2016, 47(3): 771-776.
WANG Huai-guang, ZHANG Pei-lin WU Ding-hai, et al. Adaptive compressed sensing of machinery vibration based on lifting wavelet transform[J]. Journal of Central South University(Science and Technology), 2016, 47(3): 771-776.
[8] Sun J, Feng B, Xu W B. Particle swarm optimization with particles having quantum behavior[C]. Proceeding of the Congress on Evolutionary Computation,Portland, Oregon, USA, 2004:325-331.
[9] M Aharon, M Elad. K-SVD:an algorithm fordesigning overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322.
[10] Candes E J, Romberg J K, Tao T. Robust uncertainty principles: exact signal reconstruction from high incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
[11] Candes E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.
[12] 严奉霞, 王泽龙, 朱炬波, 等. 压缩感知理论与光学压缩成像系统[J]. 国防科技大学学报, 2014, 36(2): 140-147.
YAN Feng-xia, WANG Ze-long, ZHU Ju-bo, et al. Compressed sensing theory and optimal compressive imaging systems[J]. Journal of National University of Defense Technology, 2014, 36(2): 140-147.
[13] 冯远静, 吴烨, 张贵军, 等. 基于压缩感知高阶张量扩散磁共振稀疏成像方法[J]. 模式识别与人工智能. 2015. 28(8): 710-719.
FENG Yu-jing, WU Ye, ZHANG Gui-jun, et al. Higher order tensor diffusion magnetic resonance sparse imagine based on compressed sensing[J]. PR & AI, 2015, 28(8): 710-719.
[14] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
[15] 郭海燕, 王天荆, 杨振. DCT域语音信号自适应压缩感知[J]. 仪器仪表学报, 2010, 31(6): 1262-1268.
GUO Hai-yan, WANG Tian-jing, YANG Zhen. Adaptive speech compressed sensing in the DCT domain[J]. Chinese Journal of Scientific Instrument, 2010, 31(6): 1262-1268.
[16] 王伟伟, 廖桂生, 吴孙勇, 等. 基于小波稀疏表示的压缩感知SAR成像算法研究[J]. 电子与信息学报, 2011, 33(6): 1440-1446.
WANG Wei-wei, LIAO Gui-sheng, WU Sun-yong, et al. A compressive sensing imagine approach based on wavelet sparse representation[J]. Journal of Electronics & Information Technology, 2011, 33(6): 1440-1446.
[17] 彭向东, 张华, 刘继忠. 基于过完备字典的体域网压缩感知心电重构[J]. 自动化学报, 2014, 40(7): 1421-1432.
PENG Xiang-dong, ZHANG Hua, LIU Ji-zhong. ECG reconstruction of body sensor network using compressed sensing based on overcomplete dictionary[J]. Acta Automatic Sinica, 2014, 40(7): 1421-1432.