Compressed sensing algorithm for machinery vibration signals based on optimal classification

WANG Qiang ZHANG Pei-lin WANG Huai-guang WU Ding-hai ZHANG Yun-qiang

Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (14) : 86-93.

PDF(1223 KB)
PDF(1223 KB)
Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (14) : 86-93.

Compressed sensing algorithm for machinery vibration signals based on optimal classification

  • WANG Qiang  ZHANG Pei-lin  WANG Huai-guang  WU Ding-hai  ZHANG Yun-qiang
Author information +
History +

Abstract

Aiming at the difficulty of dictionary construction for machinery vibration signals in the process of compressed sensing, an adaptive dictionary construction algorithm based on signal classification was put forward. Machinery vibration signals were divided into blocks according to their cutting size, and an energy sequence was produced in accordance with the energy of each signal block. Using the QPSO algorithm, the energy sequence was classified where the variance of the sequence between different classes was ensured to be the biggest. Then the classification of the signal blocks was realized by virtue of the energy sequence. Finally, the dictionary of different class of signal blocks was constructed by using the mcthod of KSVD, and the reconstruction of machinery vibration signals was achieved. The experiments on rolling bearing in different status show that the method put forward can increase the peak signal to noise ratio of reconstructed signals and improve the effects of reconstruction for machinery vibration signals.

Key words

machinery vibration signals / dictionary construction / adaptive blocked compressed sensing / optimal classification

Cite this article

Download Citations
WANG Qiang ZHANG Pei-lin WANG Huai-guang WU Ding-hai ZHANG Yun-qiang. Compressed sensing algorithm for machinery vibration signals based on optimal classification[J]. Journal of Vibration and Shock, 2018, 37(14): 86-93

References

[1] 郭亮, 高宏力, 黄海凤, 等. 基于压缩感知理论的时变信号压缩技术[J]. 西南交通大学学报, 2015, 50(3): 511-516.
GUO Liang, GAO Hong-li, HUANG Hai-feng, et al. Time-varying signal compression technology based on compressed sensing [J]. Journal of Southwest Jiaotong University, 2015, 50(3): 511-516.
[2] 黄庆卿, 汤宝平, 邓蕾, 等. 机械振动无线传感网络数据分块无损压缩方法[J]. 仪器仪表学报, 2015, 36(7): 1605-1610.
HUANG Qing-qing , TANG Bao-ping, DENG Lei, et al. Data block-based lossless compression for machine vibration wairless sensor networks[J]. Chinese Journal of Scientific Instrument, 2015, 36(7):1605-1610.
[3] Candes E J, Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.
[4] 周俊, 伍星, 迟毅林, 等. 基于改进频域压缩感知的轴承复合故障欠定盲提取[J]. 振动与冲击, 2015, 34(14): 123-128.
ZHOU Jun, WU Xing, CHIN Yi-lin, et al. Underdetermined blind exaction for bearings complex failures based on improved frequency domain compressive sensing[J]. Journal of Vibration and Shock, 2015, 34(14): 123-128.
[5] 黄庆卿, 汤宝平, 邓蕾, 等. 无线传感器网路子带能量自适应数据压缩方法[J]. 仪器仪表学报, 2014, 35(9): 1998-2003.
HUANG Qing-qing, TANG Bao-ping, DENG Lei, et al. Subband energy adaptive data compression method for wairless sensor networks[J]. Chinese Journal of Scientific Instrument, 2014, 35(9): 1998-2003.
[6] 佟路, 王华, 洪荣晶. 基于压缩感知的回转支承振动监测信号采集方法[J]. 南京工业大学学报(自然科学版), 2015, 37(5): 48-52.
TONG Lu, WANG Hua, HONG Rong-jing. Slewing bearing vibration signal acquisition based on compressen sensing[J]. Journal of Nanjing Tech University, 2015, 37(5): 48-52.
[7] 王怀光, 张培林, 吴定海, 等. 基于提升小波的机械振动信号自适应压缩感知[J]. 中南大学学报(自然科学版), 2016, 47(3): 771-776.
WANG Huai-guang, ZHANG Pei-lin WU Ding-hai, et al. Adaptive compressed sensing of machinery vibration based on lifting wavelet transform[J]. Journal of Central South University(Science and Technology), 2016, 47(3): 771-776.
[8] Sun J, Feng B, Xu W B. Particle swarm optimization with particles having quantum behavior[C]. Proceeding of the Congress on Evolutionary Computation,Portland, Oregon, USA, 2004:325-331.
[9] M Aharon, M Elad. K-SVD:an algorithm fordesigning overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322.
[10] Candes E J, Romberg J K, Tao T. Robust uncertainty principles: exact signal reconstruction from high incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
[11] Candes E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.
[12] 严奉霞, 王泽龙, 朱炬波, 等. 压缩感知理论与光学压缩成像系统[J]. 国防科技大学学报, 2014, 36(2): 140-147.
YAN Feng-xia, WANG Ze-long, ZHU Ju-bo, et al. Compressed sensing theory and optimal compressive imaging systems[J]. Journal of National University of Defense Technology, 2014, 36(2): 140-147.
[13] 冯远静, 吴烨, 张贵军, 等. 基于压缩感知高阶张量扩散磁共振稀疏成像方法[J]. 模式识别与人工智能. 2015. 28(8): 710-719.
FENG Yu-jing, WU Ye, ZHANG Gui-jun, et al. Higher order tensor diffusion magnetic resonance sparse imagine based on compressed sensing[J]. PR & AI, 2015, 28(8): 710-719.
[14] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
[15] 郭海燕, 王天荆, 杨振. DCT域语音信号自适应压缩感知[J]. 仪器仪表学报, 2010, 31(6): 1262-1268.
GUO Hai-yan, WANG Tian-jing, YANG Zhen. Adaptive speech compressed sensing in the DCT domain[J]. Chinese Journal of Scientific Instrument, 2010, 31(6): 1262-1268.
[16] 王伟伟, 廖桂生, 吴孙勇, 等. 基于小波稀疏表示的压缩感知SAR成像算法研究[J]. 电子与信息学报, 2011, 33(6): 1440-1446.
WANG Wei-wei, LIAO Gui-sheng, WU Sun-yong, et al. A compressive sensing imagine approach based on wavelet sparse representation[J]. Journal of Electronics & Information Technology, 2011, 33(6): 1440-1446.
[17] 彭向东, 张华, 刘继忠. 基于过完备字典的体域网压缩感知心电重构[J]. 自动化学报, 2014, 40(7): 1421-1432.
PENG Xiang-dong, ZHANG Hua, LIU Ji-zhong. ECG reconstruction of body sensor network using compressed sensing based on overcomplete dictionary[J]. Acta Automatic Sinica, 2014, 40(7): 1421-1432.
 
PDF(1223 KB)

521

Accesses

0

Citation

Detail

Sections
Recommended

/