Two-way fluid-structure coupled analysis for dynamic responses of steel tanks under vapor cloud explosion

HU Ke2,1, ZHAO Yang1, WANG Gang2,GUO Yanjun2

Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (15) : 199-208.

PDF(4968 KB)
PDF(4968 KB)
Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (15) : 199-208.

Two-way fluid-structure coupled analysis for dynamic responses of steel tanks under vapor cloud explosion

  • HU Ke2,1, ZHAO Yang1, WANG Gang2,GUO Yanjun2
Author information +
History +

Abstract

Explosion fluid fields cause motions and deformations of steel tanks when their internal vapor cloud blasts. These motions and deformations conversely act the internal explosion flow fields. Thus, solving dynamic responses of steel tanks under internal explosion actually is a complex two-way fluid-structure coupling problem. Here, adopting a weakly coupled method, a two-way fluid-structure coupled model was built based on the simulation platform ANSYS Workbench to effectively simulate the interaction between a steel tank and its internal explosion flow field, and obtain the steel tank’s structural dynamic responses. Meanwhile, the uncoupling calculation was done and the uncoupling method and the coupling one were compared and analyzed. It was shown that under internal vapor cloud explosion, the maximum plastic strain appears at the circumferential connection between tank roof and tank wall, this zone’s failure is the first to exceed the failure strain due to plastic strain; the deformation and failure model of the tank obtained with the coupling analysis are basically identical with those using the uncoupling analysis, the uncoupling analysis can preliminarily predict dynamic responses and dangerous areas of tanks more easily.

Key words

 steel tanks / vapor cloud explosion / explosion loading / fluid-structure coupling / overpressure / CFD

Cite this article

Download Citations
HU Ke2,1, ZHAO Yang1, WANG Gang2,GUO Yanjun2. Two-way fluid-structure coupled analysis for dynamic responses of steel tanks under vapor cloud explosion[J]. Journal of Vibration and Shock, 2018, 37(15): 199-208

References

[1] 张亚军,徐胜利.中心内爆引起的圆柱壳流固耦合问题数值模拟[J].中国科学技术大学学报, 2007, 37(1): 6-12.
ZHANG Ya-jun, XU Sheng-li. Numerical simulation on flow structure interaction loaded by a blast wave from a central charge[J]. Journal of University of  Science and Technology of China , 2007, 37(1): 6-12.
[2] 胡可, 赵阳, 王震. 锥顶钢储罐内部可燃气体爆炸冲击荷载的CFD模拟[J]. 振动与冲击, 2015, 34(12): 150-156.
HU Ke, ZHAO Yang, WANG Zhen. CFD simulation of internal flammable gas explosion loading in cone-roof steel tanks[J]. Journal of vibration engineering, 2015, 34(12): 150-156.
[3] 胡可, 赵阳. 圆柱壳容器内部可燃气体爆炸冲击作用的双向流固耦合模拟[J]. 建筑结构学报, 2016, 37(S1): 211-218.
HU Ke, ZHAO yang. Two-way fluid-structure coupling simulation of internal flammable gas explosion shock loading in cylindrical vessels[J]. Journal of Building Structures, 2016, 37(S1): 211-218.
[4] 周春辉. 强动荷载作用下流固耦合问题数值模拟[D].大连: 大连理工大学, 2013.
ZHOU Chun-hui. Numerical analysis for fluid-structure interaction under impusive loading[D]. Dalian: Dalian University of Technology, 2013.
[5] Baum J, Luo H, Mestreau E L, et al. A new coupled CFD/CSD methodology for modeling weapon-target interaction[C]. Proceedings of 37th Aerospace Sciences Meeting and Exhibit, 1999: 1-11.
[6] Chun S. Nonlinear fluid-structure interaction of flexible shelters under blast loading[C]. AIAA/ASME /ASCE/AHS/ ASC Structures, Structural Dynamics & Materials Conference, 2005: 18-21.
[7] Haupt M, Niesner R, Unger R, et al. Coupling techniques for thermal and mechanical fluid-structure- interactions in aeronautics[J].Proceedings in Applied Mathematics and Mechanics, 2005,5(1): 19–22.
[8] 王彬, 杨庆山. 弱耦合算法的实现及其应用[J]. 工程力学, 2008, 25(12): 48-52.
WANG Bin, YANG Qing-shan. The realization and application of loosely coupled algorithm[J]. Engineering Mechanics, 2008, 25(12): 48-52.
[9] 武岳, 沈世钊. 索膜结构风振响应中的气弹耦合效应研究[J]. 建筑钢结构进展, 2006, 8(2): 30-36.
WU Yue, SHEN Shi-zhao. Study on wind induced vibration of membrane cable structures with the consideration of aeroelastic effect[J]. Progress in steel building structures, 2006, 8(2): 30-36.
[10]薛祖杰. 基于CFD的复杂超高层建筑双向流固耦合研究[D]. 重庆: 重庆大学, 2012.
XUE Zu-jie. Based on the CFD complex tall building two-way flow-solid coupling research[D]. Chongqing: Chongqing University, 2012.
[11]Versteeg H K, Malalasekera W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method[M]. Wiley, New York, 1995.
[12]周雪漪. 计算水力学理论与应用[M]. 北京: 清华大学出版社, 1995.
ZHOU Xue-yi. Computational Hydraulics Theory and Application[M]. Beijing: Tsinghua University Press, 1995.
[13]Launder B E, Spalding D B. Lectures in Mathematical Models of Turbulence[M]. London: Academic Press, 1972.
[14]李鹏飞, 徐敏义, 王飞飞. 精通CFD工程仿真与案例实战[M]. 北京: 人民邮电出版社, 2011.
LI Peng-fei, XU Min-yi, WANG Fei-fei. Proficent in CFD Enginnering Simulation and Actual Cases[M]. Beijing: Post&Telecom Press, 2011.
[15]Adishchev V V, Kersey V M. Calculation of the shells of explosion chambers [J]. Combustion, Explosion and Shock Waves, 1979, 15(6): 780-784.
[16]苏波, 钱若军, 袁行飞等. 流固耦合界面信息传递理论和方法研究进展[J]. 空间结构, 2010, 16(1): 3-10.
SU Bo, QIAN Ruo-jun, YUAN Xing-fei. Advances in research on theory and method of data exchange on coupling interface for FSI analysis[J]. Spatial Structures, 16(1): 3-10.
[17]Boer A D, Zuijlen A H V, Bijl H. Review of coupling methods for non-matching meshes[J].Computer Methods in Applied Mechanics & Engineering, 2007, 196(8): 1515-1525.
[18]郑迪. 基于CFD的Savonius风机叶片优化研究[D]. 杭州: 浙江大学, 2014.
ZHENG Di. Research on the optimization analysis of savonius wind rotor based on CFD[D]. Hangzhou: Zhejiang University, 2014.
[19]任立朝. 高参数波纹管机械密封摩擦副界面的热流固耦合研究[D]. 新疆: 新疆大学, 2013.
REN Li-chao. Study of heat-fluid-solid interaction of fraction pair interface in the high parameter bellow mechanical seal[D]. Xinjiang: Xinjiang University, 2013.
[20]娄涛. 基于ANSYS的流固耦合问题数值模拟[D]. 兰州: 兰州大学, 2008.
LOU Tao. Numerical simulation of fluid-solid interaction problems based on ANSYS[D]. Lanzhou: Lanzhou University, 2008.
[21]Hu K, Zhao Y. Numerical simulation of internal gaseous explosion loading in large-scale cylindrical tanks with fixed roof[J]. Thin-Walled Structures, 2016, 105: 16-28.
[22]Batalov V A, Ivanov A G, Ivanova G G, et al. Strength of single-layer and multilayer cylindrical vessels loaded internally by pulses of various lengths[J]. Journal of Applied Mechanics and Technical Physics, 1978, 19(5): 152-158.
[23]Cowper G R, Symonds P S. Strain hardening and strain-rate effects in the impact loading of cantilever beams [J]. Small Business Economics, 1957, 31(3):235-263.
PDF(4968 KB)

Accesses

Citation

Detail

Sections
Recommended

/