Modelling and effect analysis of design parameters for orifice-type air damping systems

CHEN Junjie1,2, YIN Zhihong2, GUO Konghui4, HE Jianghua3, ZENG Xiangkun5, YUAN Xianju6

Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (16) : 241-248.

PDF(1446 KB)
PDF(1446 KB)
Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (16) : 241-248.

Modelling and effect analysis of design parameters for orifice-type air damping systems

  • CHEN Junjie1,2, YIN Zhihong2, GUO Konghui4, HE Jianghua3, ZENG Xiangkun5, YUAN Xianju6
Author information +
History +

Abstract

Considering the bellow’s mechanical characteristics, the bellow model was achieved by adopting the fractional derivative Kelvin-Voigt model and smooth Coulomb friction model; and based on Newton’s mechanics, thermodynamics, fluid mechanics and viscoelastic mechanics, the nonlinear model of orifice type air damping system (OADS) was established.Near the working equilibrium point of OADS, the linear model of OADS was derived.Meanwhile, equivalent stiffness and equivalent damping coefficient equations were also derived by the equivalent complex stiffness method.Taking an air spring as the research object, we conducted this experiment to verify the OADS equivalent model’s effectiveness.Based on the above, the influence laws of excitation amplitude and excitation frequency, along with key design parameters for equivalent stiffness and equivalent damping coefficients of OADS were further analyzed and studied.The results provide valuable references for the design and match of stiffness and damping of air suspension.

Key words

Air spring / Throttling orifice / Equivalent stiffness / Equivalent damping coefficient / Design parameter

Cite this article

Download Citations
CHEN Junjie1,2, YIN Zhihong2, GUO Konghui4, HE Jianghua3, ZENG Xiangkun5, YUAN Xianju6. Modelling and effect analysis of design parameters for orifice-type air damping systems[J]. Journal of Vibration and Shock, 2018, 37(16): 241-248

References

[1] Benjamin B.Pneumatic spring[P]. US Patent:No.971583,1910.
[2] 喻凡, 黄宏成, 管西强. 汽车空气悬架的现状及发展趋势[J]. 汽车技术. 2001, (8): 6-9.
   YU Fan, HUANG Hongcheng, GUAN Xiqiang. Present Status and Developing Trend of Automotive Air Suspension[J]. Automobile Technology. 2001, (8): 6-9.
[3] Fox M N, Roebuck R L, Cebon D. Modelling rolling-lobe air springs[J]. International Journal of Heavy Vehicle Systems. 2007, 14(3): 254-270.
[4] 郭文观, 石柏军. 空气悬架的发展和试验方法研究[J]. 机床与液压. 2008, 36(05): 351-354.
   GUO Wenguan, SHI Baijun. The dvelopment of air suspension and the reaearch on experimentation[J]. Mechine Tool & Hydraulics. 2008, 36(05): 351-354.
[5] Yin Z H, Khajepour A, Cao D P, Ebrahimi B, Guo K H. Pneumatic suspension damping characterisation with equivalent damping ratio[J]. International Journal of Heavy Vehicle Systems. 2012, 19(3): 314-332.
[6] Yin Z H, Khajepour A, Cao D P, Ebrahimi B, Guo K H. A new pneumatic suspension system with independent stiffness and ride height tuning capabilities[J]. Vehicle System Dynamics. 2012, 50(12): 1735-1746.
[7] 王家胜, 朱思洪. 带附加气室空气弹簧动刚度的线性化模型研究[J]. 振动与冲击. 2009, 28(2): 72-76.
   WANG Jiasheng, ZHU Sihong. Linearized model for dynamic stiffness of air spring with auxiliary chamber[J]. Journal of Vibration and Shock. 2009,28(2):72-76.
[8] Toyoufuku K, Yamada C, Kagawa T, Fujita T. Study on dynamic characteristic analysis of air spring with auxiliary chamber[J]. Society of Automotive Engineers of Japan Review. 1999, 20: 349-355.
[9] J.I.Soleiman, D.Tajer-Ardabili. Self-damped pneumatic isolator for variable frequency excitation[J]. Journal Mechanical Engineering Science. 1966, 8(3): 284-293.
[10] B.I.Bachrach, E.Rivin. Analysis of adamped pneumatic spring[J]. Journal of Sound and Vibration. 1983, 86(2): 191-197.
[11] 张广世, 沈钢. 带有连接管路的空气弹簧动力学模型研究[J]. 铁道学报. 2005, 27(4): 36-41.
   ZHANG Guangshi, SHEN Gang. Study on dynamic air spring model with connecting pipe[J]. Journal of The China Railway Society. 2005, 27(4): 36-41.
[12] 贺亮, 周永清, 朱思洪. 基于激振法的空气弹簧垂向刚度和阻尼特性研究[J]. 振动与冲击. 2008, 27(7): 167-170.
   He Liang, Zhou Yongqing, Zhu Shihong. Study on vertical stiffness and damping of air spring based on excitation method[J]. Journal of Vibration and Shock, 2008.
[13] 潘孝斌,倪梯闵,谈乐斌. 基于空气阻尼高速弹体软回收方法研究[J]. 振动与冲击. 2016, 35(17): 77-82.
   PAN Xiaobin,NI Timin,TAN Lebin. High speed projectile soft recovery base on air damping[J].Journal of Vibration and Shock,2016, 35(17): 77-82.
[14] Berg M. A Non-Linear Rubber Spring Model for Rail Vehicle Dynamics Analysis[J]. Vehicle System Dynamics. 1998, 30(3-4): 197-212.
[15] Sjöberg M. Rubber isolators – Measurements and modelling using Fractional Derivatives and Friction.  SAE paper No.2000-01-3518,2000.
[16] 殷智宏. 双气室空气悬架系统理论及实验研究[D]. 长沙: 湖南大学,  2011,1-12.
   YIN Zhihong. Theoretical and experimental study of a dual-chamber pneumatic suspension[D]. Changsha: Hunan University, 2011,1-12.
[17] Lewandowski R, Chorążyczewski B. Identification of the parameters of the Kelvin–Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers[J]. Computers & Structures. 2010, 88(1-2): 1-17.
[18] Thaijaroen W, Harrison A J L. Nonlinear dynamic modelling of rubber isolators using six parameters based on parabolic spring, springpot, and smooth-slip friction element[J]. Polymer Testing. 2010, 29(7): 857-865.
 
 
PDF(1446 KB)

548

Accesses

0

Citation

Detail

Sections
Recommended

/