MP sparse decomposition based on iterative residual and extension algorithm#br#

LI Zhen,LI Weiguang,ZHAO Xuezhi,LIN xin

Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (17) : 161-168.

PDF(3517 KB)
PDF(3517 KB)
Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (17) : 161-168.

MP sparse decomposition based on iterative residual and extension algorithm#br#

  • LI Zhen,LI Weiguang,ZHAO Xuezhi,LIN xin
Author information +
History +

Abstract

The matching pursuit (MP) algorithm is usually used to realize signals’sparse decomposition. In the classical MP algorithm,the criterion for selecting the optimal core function is that the primitive function and the core function have the largest inner product. However,this criterion may cause reconstructed signals to have large error. Aiming at this problem,the iterative residual criterion was proposed. Many examples showed that this criterion causes reconstructed signals to have a smaller error. Meanwhile,the endpoint effect was detected in both the classical MP algorithm and the iterative residual algorithm to cause reconstructed signals having a larger error at an endpoint. In order to solve this problem,an extension algorithm based on polynomial fitting was proposed. Example results showed that this algorithm is more effective than the iterative residual algorithm be to weaken the endpoint effect.

Key words

sparse decomposition / iterative residual criterion / endpoint effect / extension algorithm

Cite this article

Download Citations
LI Zhen,LI Weiguang,ZHAO Xuezhi,LIN xin. MP sparse decomposition based on iterative residual and extension algorithm#br#[J]. Journal of Vibration and Shock, 2018, 37(17): 161-168

References

[1] Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries [J]. IEEE Transactions on signal processing, 1993, 41(12): 3397-3415.
[2] 尹忠科, 邵君, Pierre Vandergheynst. 利用FFT实现基于MP的信号稀疏分解[J]. 电子与信息学报, 2006, 04: 614-618.
    Yin Zhong-ke, Shao Jun, Pierre Vandergheynst. MP Based Signal Sparse Decomposition with FFT [J]. Journal of Electronics & Information Technology, 2006, 04(1): 614-618.
[3] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit [J]. SIAM review, 2001, 43(1): 129-159.
[4] Pati Y C, Rezaiifar R, Krishnaprasad P S. Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition[C]//Signals, Systems and Computers, 1993. 1993 Conference Record of the Twenty-Seventh Asilomar Conference on. IEEE, 1993: 40-44.
[5] Tropp J, Gilbert A C. Signal recovery from partial information via orthogonal matching pursuit [J]. IEEE Trans. Inform. Theory, 2007, 53(12): 4655-4666.
[6] 朱会杰, 王新晴, 芮挺等. 基于正交匹配追踪的强脉冲电磁干扰滤波新方法[J]. 振动与冲击, 2015, 34(15): 33-37.
ZHU Hui-jie, WANG Xin-qing, RUI Ting, et al. A new denoising method for strong pulse electromagnetic interference signals based on orthogonal matching pursuit [J]. Journal of Vibration and Shock, 2015, 34(15): 33-37.
[7] Needell D, Vershynin R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit [J]. IEEE Journal of selected topics in signal processing, 2010, 4(2): 310-316.
[8] 梁巍, 阙沛文, 陈亮, 等. 基于残差比阈值的迭代终止条件匹配追踪稀疏分解方法[J]. 上海交通大学学报, 2010, 44(2): 171-175.
    LINAG Wei, QUE Pei-wen, CHEN Liang, et al. Residual Ratio Iteration Termination Condition for MP Method [J]. Journal of Shang Jiao Tong University, 2010, 44(2): 171-175.
[9] 程文波, 王华军. 信号稀疏表示的研究及应用[J]. 西南石油大学学报(自然科学版),2008,05:148-151+2+1.
CHENG Wen-bo, WANG Hua-jun. The research and application of sparse signal representation [J]. Journal of Southwest Petroleum University(Science&Technology Edition,2008,05:148-151+2+1.
[10] 余发军, 周凤星, 严保康. 基于字典学习的轴承早期故障稀疏特征提取[J]. 振动与冲击, 2016, 35(6): 181-186.
YU Fa-jun, ZHOU Feng-xing, YAN Bao-kang. Bearing initial fault feature extraction via sparse representation based on dictionary learning [J]. Journal of Vibration and Shock, 2016, 35(6): 181-186.
[11] 陈向民, 于德介, 罗洁思. 基于信号共振稀疏分解的包络解调方法及其在轴承故障诊断中的应用[J]. 振动工程学报, 2012, 25(6): 628-636.
CHEN Xiang-min, YU De-jie, LUO Jie-si. Envelope demodulation method based on resonance-based sparse signal decomposition and its application in roller bearing fault diagnosis [J]. Journal of Vibration Engineering, 2012, 25(6): 628-636.
[12] Kwansik K, Wittenbrink C M, Pang A. Maximal-abstract differences for comparing direct volume rendering algorithms[M]. Hewlett-Packard Laboratories, 2000.
[13] 孙云嵩, 于德介, 陈向民, 等. 基于信号共振稀疏分解的阶比分析及其在齿轮故障诊断中的应用[J]. 振动与冲击, 2013, 32(16): 88-94.
SUN Yun-chong, YU De-jie, CHEN Xiang-min. Order domain analysis based on resonance-based sparse signal decomposition and its application to gear fault diagnosis [J]. Journal of Vibration and Shock. 2013, 32(16):88-94.
PDF(3517 KB)

Accesses

Citation

Detail

Sections
Recommended

/