Blind source separation method based on membrane computing and PSO algorithm

SUN Yuan1,YANG Feng1,ZHENG Jing2,XU Maoxuan1,PEI Shuojin2

Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (17) : 63-71.

PDF(1053 KB)
PDF(1053 KB)
Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (17) : 63-71.

Blind source separation method based on membrane computing and PSO algorithm

  • SUN Yuan1,YANG Feng1,ZHENG Jing2,XU Maoxuan1,PEI Shuojin2
Author information +
History +

Abstract

In order to solve problems of slower convergence and lower separating performance of the existing blind source separation methods,a new method based on membrane computing (MC) and particle swarm optimization (PSO) was proposed. The separated signals’neg-entropy was taken as the fitness function of PSO. Particles were uniformly distributed into each elementary membrane. The velocity and position of population particles were updated with a particle own optimal position and the population global optimal position. The optimal solution to PSO was used to adjust step function of blind source separation and then separate signals. The proposed algorithm simplified inertia weight’s choosing to ensure the accuracy of PSO local search and satisfy the variety of global search. The simulation and actual application showed that mixing signals can be well separated with this new method and the premature convergence problem of PSO can be avoided; this new method has a faster convergence speed and a more excellent separating performance.
 

Key words

 blind source separation (BSS) / membrane computing (MC) / particle swarm optimization (PSO) / inertia weight

Cite this article

Download Citations
SUN Yuan1,YANG Feng1,ZHENG Jing2,XU Maoxuan1,PEI Shuojin2. Blind source separation method based on membrane computing and PSO algorithm[J]. Journal of Vibration and Shock, 2018, 37(17): 63-71

References

[1] 徐先锋, 段晨东, 刘来君, 等. 一种利用结构特点实现复数域联合对角化解盲源分离新算法研究及应用[J]. 电子学报, 2017, 45(1): 29-36.
XU Xian-feng, DUAN Chen-dong, LIU Lai-jun, et al. Research on a new structural traits based on complex-valued space joint diagonalization algorithm for blind source separation and its applications [J]. Acta Electronica Sinica, 2017, 45(1): 29-36.
[2] 王金贵, 张苏. 基于频域约束独立成分分析的经验模态分解去噪方法[J]. 煤炭学报, 2017, 42(3): 621-629.
WANG Jin-gui, ZHANG Su. EMD denoising method based on frequency domain constrained independent component analysis [J]. Journal of China Coal Society, 2017, 42(3): 621-629.
[3] 李良敏, 任景岩. 基于粒子群算法优化的独立分量分析算法[J]. 振动与冲击, 2015, 34(8): 7-11.
LI Liang-min, REN Jing-yan. A universal particle swarm-optimized independent component analysis algorithm [J]. Journal of Vibration and Shock, 2015, 34(8): 7-11.
[4] Wang Rongjie, Zhan Yiju, Zhou Haifeng. A Class of Sequential Blind Source Separation Method in Order Using Swarm Optimization Algorithm [J]. Circuits Systems and Signal Processing, 2016, 35(9): 3220-3243.
[5] M.Bohm, K.Stadlthanner, P.Gruber, et al. On the Use of Simulated Annealing to Automatically Assign Decorrelated Components in Second-Order Blind Source Separation [J]. IEEE Transactions on Biomedical Engineering, 2006, 53(5): 810-820.
[6] Gaojin Wen, Chunxiao Zhang, Zhaorong Lin, et al. Independent Component Analysis Based on Genetic Algorithms [C]. International Conference on Natural Computation, 2014: 214-218.
[7] 杨杰, 俞文文, 田昊, 等. 基于独立分量分析的欠定盲源分离方法[J]. 振动与冲击, 2013, 32(7): 30-33.
YANG Jie, YU Wen-wen, TIAN Hao, et al. Underdetermined blind source separation method based on independent component analysis [J]. Journal of Vibration and Shock, 2013, 32(7): 30-33.
[8] 李舜酩. 振动信号的盲源分离技术及应用[M]. 北京: 航空工业出版社, 2011.
LI Shun-ming. Blind source separation technology and application of vibration signal [M]. Beijing: Aviation Industry Press, 2011.
[9] P. Commom, et al. Independent component analysis. A new concept?[J]. Signal Processing, 1994, 36(3): 287-314.
[10] 郭慧. 欠定盲源分离算法及在电磁领域的应用研究[D]. 哈尔滨. 哈尔滨工程大学, 2014.
GUO Hui. Underdetermined blind source separation algorithm and applied research in the field of electromagnetic [D]. Harbin. Harbin Engineering University, 2014.
[11] 张朝柱, 张健沛, 孙晓东. 基于自适应粒子群优化的盲源分离[J]. 系统工程与电子技术, 2009, 31(6): 1275-1278.
ZHANG Chao-zhu, ZHANG Jian-pei, SUN Xiao-dong. Blind source separation based on adaptive particle swarm optimization [J]. Systems Engineering and Electronics, 2009, 31(6): 1275-1278.
[12] 朱孝龙, 张贤达. 基于奇异值分解的超定盲信号分离 [J]. 电子与信息学报, 2004, 26(3): 337-343.
ZHU Xiao-long, ZHANG Xian-da. Overdetermined blind source separation based on singular value decomposition [J]. Journal of Electronics & Information Technology, 2004, 26(3): 337-343.
[13] Karvanen J, Koivunen V. Blind separation methods based on Pearson system and its extensions [J]. Signal Processing, 2002, 82(4): 663-673.
[14] 张银雪, 田学民. 基于改进PSO-ICA的地震信号去噪方法[J]. 石油地球物理勘探, 2012, 47(1): 56-62.
ZHANG Yin-xue, TIAN Xue-min. Seismic denoising based on the modified particle swarm optimization-independent analysis [J]. Oil Geophysical Prospecting, 2012, 47(1): 56-62.
[15] Shi Y, Eberhart R C. Empirical Study of Particle Swarm Optimization[C]. Proceedings of the 1999 Congress on Evolutionary Computation. Washington: IEEE, 1999. 1945-1950.
[16] 张葛祥, 潘林强. 自然计算的新分支—膜计算[J]. 计算机学报, 2010, 33(2): 208-214.
ZHANG Ge-xiang, PAN Lin-qiang. A survey of membrane computing as a new branch of natural computing [J]. Chinese Journal of Computers, 2010, 33(2): 208-214.
[17] 张丽平. 粒子群优化算法的理论及实践[D]. 杭州: 浙江大学, 2005.
ZHANG Linping. The Theorem and Practice upon the Particle Swarm Optimization Algorithm [D]. Hangzhou: Zhejiang University, 2005.
[18] 席剑辉,崔健驰,蒋丽英. 基于JADE-ICA的滚动轴承多故障信号盲源分离[J]. 振动与冲击, 2017, 37(5): 231-237.
XI Jianhui, CUI Jianchi, JIANG Liying. JADE-ICA-based blind source separation of multi-fault signals of rolling bearings [J]. Journal of Vibration and Shock, 2017, 37(5): 231-237.
[19] GELLE G, COLAS M, DELAUNAY G. Blind sources separation applied to rotating machines monitoring by acoustical and vibrations analysis [J]. Mechanical Systems and Signal Processing, 2000, 14(3): 427-442.
PDF(1053 KB)

Accesses

Citation

Detail

Sections
Recommended

/