Global sensitivity analysis for a vibro-acoustic coupled model based on SEA

CAI Yannian1, YU Hongliang1,2, YAN Jin2,LIAO Jianbin2,YU Wanneng2

Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (19) : 50-55.

PDF(985 KB)
PDF(985 KB)
Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (19) : 50-55.

Global sensitivity analysis for a vibro-acoustic coupled model based on SEA

  • CAI Yannian1, YU Hongliang1,2, YAN Jin2,LIAO Jianbin2,YU Wanneng2
Author information +
History +

Abstract

In order to study influence laws of statistical energy parameter uncertainties on uncertainty of vibro-acoustic responses, Fourier amplitude sensitivity test (FAST) was applied to perform the parametric sensitivity analysis for a statistical energy vibro-acoustic model with three subsystems.It was shown that the most important parameter is the resonance coupling loss factor within a wide frequency band; the non-resonance coupling loss factor has a certain influence within a low frequency band; the coincidence effect changes the influence level of each parameter on the uncertainty of the output function under the critical frequency.The proposed method and conclusions could be used to identify the source of vibro-acoustic response uncertainty and contributions of different parameters.They provided a reference for designs of vibration and noise reduction based on SEA.

Key words

statistical energy analysis / global sensitivity analysis / Fourier Amplitude Sensitivity Test / uncertainty

Cite this article

Download Citations
CAI Yannian1, YU Hongliang1,2, YAN Jin2,LIAO Jianbin2,YU Wanneng2. Global sensitivity analysis for a vibro-acoustic coupled model based on SEA[J]. Journal of Vibration and Shock, 2018, 37(19): 50-55

References

[1] 王海英, 赵德有. 中厚粘弹性阻尼芯层夹层板间的耦合损耗因子研究[J]. 船舶力学, 2009, 13(6):978-989.
WANG Hai-ying, ZHAO De-you. Coupling loss factor analysis of two L-shaped sandwich plates with thick viscoelastic core[J]. Journal of Ship Mechanics, 2009, 13(6):978-989.
[2] 欧阳山,鲁帆,伍先俊,等. 列车白车身损耗因子试验研究[J]. 振动与冲击, 2015, 34(5): 20-25.
OUYANG Shan, LU Fan, WU Xian-jun, et al. Experimental study of loss factors for train carriage body in white[J]. Journal of Vibration & Shock, 2015, 34(5): 20-25.
[3] 林永水, 吴卫国, 陈景昊,等. 钢铝结构连接耦合损耗因子计算方法研究[J]. 振动与冲击, 2015, 34(3): 204-209.
LIN Yong-Shui, WU Wei-Guo, CHEN Jing-Hao, et al. A new calculating method for coupling loss factor of a steel-aluminum junction[J]. Journal of Vibration & Shock, 2015, 34(3):204-209.
[4] Saltelli A, Ratto M. Global sensitivity analysis: the primer[M]. New Jersey:John Wiley & Sons, Inc, 2008.
[5] 宁玮, 张景绘, 王珺. 统计能量分析法中参数灵敏度分析[J]. 系统仿真学报, 2009, 21(17):5366-5370.
WANG Ning, ZHANG Jing- hui, WANG Jun. Sensitivity analysis of parameters in statistical energy analysis method[J]. Journal of System Simulation, 2009, 21(17):5366-5370.
[6] 刘小勇, 盛美萍, 行晓亮,等. 双层圆柱壳噪声预报及统计能量参数灵敏度分析[J]. 振动与冲击, 2007, 26(7):50-53.
LIU Xiao-yong, SHENG Mei-ping, XING Xiao-liang, et al. Prediction of noise radiation from a ring stiffened cylindrical double-shell and sensitivity analysis of SEA parameters[J]. Journal of Vibration & Shock, 2007, 26(7):50-53.
[7] 张国军, 闫云聚, 李鹏博. 用统计能量法分析飞行器声振响应影响因素[J]. 空军工程大学学报•自然科学版, 2013, 14(2):23-27.
ZHANG Guo-Jun, YAN Yun-Ju, LI Peng-Bo. Applications of statistical energy analysis in influencing factors analysis of aircraft vibro-acoustic response characteristics[J]. Journal of Air Force Engineering University, 2013, 14(2): 23-27.
[8] Lyon R H, DeJong R G. Theory and application of statistical energy analysis (Second Edition)[M]. Massachusetts: The MIT Press, 1995.
[9] Norton M P, Karczub D G. Fundamentals of noise and vibration analysis for engineers[M]. Cambridge: Cambridge university press, 2003.
[10] Xie G, Thompson D J, Jones C J C. Mode count and modal density of structural systems: relationships with boundary conditions[J]. Journal of Sound & Vibration, 2004, 274(3):621-651.
[11] Beranek L L, Ver I L. Noise and vibration control engineering-principles and applications [M]. New Jersey:John Wiley & Sons, Inc, 2006.
[12] 船舶及产品噪声控制与检测指南[S]. 北京:中国船级社. 2015.
[13] Wijker J J. Random vibrations in spacecraft structures design: theory and applications[M]. Berlin : Springer , 2009.
 [14] 姚德源, 王其政. 统计能量分析原理及其应用[M]. 北京:北京理工大学出版社. 1995.
[15] 钟祥璋. 建筑吸声材料与隔声材料[M]. 北京:化学工业出版社, 2012.
[16] Sobol’ I M. Sensitivity analysis for non-linear mathematical models[J]. Mathematical Modeling & Computational Experiment, 1993, 1: 407–411.
[17] Cukier R I, Fortuin C M, Shuler K E, et al. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory[J]. Journal of Chemical Physics, 1973, 59(8):3873-3878.
[18] Saltelli A, Tarantola S, Chan P S. A quantitative model-independent method for global sensitivity analysis of model output[J]. Technometrics, 1999, 41(1):39-56.
PDF(985 KB)

Accesses

Citation

Detail

Sections
Recommended

/