Damping identification for closely spaced modes based on Bessel Inequality

ZHAO Xiaodan1,HAN Junyang1,SUN Liming1,2,WANG Xifu1,

Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (20) : 179-184.

PDF(1008 KB)
PDF(1008 KB)
Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (20) : 179-184.

Damping identification for closely spaced modes based on Bessel Inequality

  • ZHAO Xiaodan1,HAN Junyang1,SUN Liming1,2,WANG Xifu1,
Author information +
History +

Abstract

Closely spaced modes exist in vibration response signals widely.The damping ratio of closely spaced modes can not be identified accurately.It has been a difficult problem to improve identification accuracy of the damping ratio of closely spaced modes.A new method to estimate the damping ratio was presented.A set of basis functions were constructed nearby the closely spaced modes and processed with the Schmidt orthogonalization.The projection of vibration response signals on standard orthogonal basis functions was calculated with the inner product algorithm.The maximum of the projection was searched using a genetic algorithm and quasi-Newton methods.According to Bessel Inequality, the natural frequency and attenuation coefficient of each modal were obtained when the projection achieved the maximum value.The damping ratios could be estimated with the natural frequency and attenuation coefficient of each modal.This method is not restricted by modal density.Digital simulations and experiment show that the damping ratio of closely spaced modes can be identified accurately.This method is valuable practically.

Key words

damping ratio / closely spaced modes / bessel inequality / genetic algorithm

Cite this article

Download Citations
ZHAO Xiaodan1,HAN Junyang1,SUN Liming1,2,WANG Xifu1,. Damping identification for closely spaced modes based on Bessel Inequality[J]. Journal of Vibration and Shock, 2018, 37(20): 179-184

References

[1] Zhiwei Guo, Meiping Sheng, Jiangang Ma, Wulin Zhang. Damping identification in frequency domain using integral method[J]. Journal of Sound and Vibration , 2015, 338(338): 237-249.
[2] 杭晓晨, 蒋令闻, 顾明华, 吴邵庆, 费庆国. 频域分解模态识别方法的阻尼识别精度研究[J].振动工程学报, 2015,  28(4): 518-524.
Hang Xiaochen, Jiang Lingwen, Gu Minghua, Wu Shaoqing, Fei Qingguo. Accurancy of modal damping identification using frequency domain decomposition method[J]. Journal of Vibration Engineering, 2015, 28(4): 518~524.
[3] 应怀樵, 刘进明, 沈 松. 半功率带宽法与INV阻尼计法求阻尼比的研究[J]. 噪声与振动控制, 2006, 26(2): 4-6.
Ying Huaiqiao, Liu Jinming, Shen Song. Half-power band width method and INV damping ration solver study[J]. Noise and Vibration control, 2006, 26(2): 4-6.
[4] Tomasz Piotr Zieliński, Krzysztof Duda. Frequency and damping estimation methods_an overview[J]. Metrology and Measurement Systems, 2011, 1053(4): 505-528. 
[5] Wu Baisheng. A correction of the half-power bandwidth method for estimating damping[J]. Technical Note, 2015, 85 (85): 315-320
[6] 赵晓丹, 刘 涛. 基于内积模极值的小阻尼计算新方法[J]. 机械科学与技术, 2009, 28(10): 1308-1310.
Zhao Xiaodan, Liu Tao. A method for small damping estimation by searching the maximum of inner product module[J]. Mechanical Science and Technology, 2009, 28(10): 1308-1310.
[7] 尹帮辉, 王敏庆, 吴晓东. 结构振动阻尼测试的衰减法研究[J]. 振动与冲击, 2014, 33(4): 100-106
Yin Banghui, Wang Minqing, Wu Xiaodong. Decay method for measuring structural vibration damping[J]. Journal of Vibration and Shock, 2014, 33(4): 100-106.
[8] 李德葆, 陆秋海. 实验模态分析及其应用[M]. 北京科学出版社, 2001. 1-3
LI Debao, LU Qiuhai. Experimental modal analysis and its application [M]. Beijing: Science Press,2001. 1-3.
[9] Shyh-Leh Chen, Jia-Jung Liu, Hsiu-Chi Lai. Wavelet analysis for identification of damping ratios and natural frequencies[J]. Journal of Sound and Vibration, 2009, 323(1-2): 130-147.
[10] 王 慧, 刘正士. 一种识别结构模态阻尼比的方法[J]. 农业机械学报, 2008, 39(6): 201-202.
Wang Hui, Liu Zhengshi. A method identification of structural damping ratios[J]. Journal of Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(6): 201-202.
[11] 黄天立, 邱发强, 楼梦麟. 基于改进HHT方法的密集模态结构参数识别[J]. 中南大学学报, 2011, 42(7): 2054-2062.
Huang Tianli, Qiu Faqiang, Lou Menglin. Application of an improved HHT method for modal parameters identification of structures with closely spaced modes[J]. Journal of Central South University, 2011, 42(7): 2054-2062.
[12] 孙 鹏, 丁幼亮, 张劲泉, 李爱群, 邓 扬. 基于Morlet小波变换的结构密集模态参数识别[J]. 东南大学学报, 2012, 42(2): 339-345.
Sun Peng, Ding Youliang, Zhang Jinquan, Li Aiqun, Deng Yang. Modal identification of closely spaced modes based on Morlet wavelet transform[J]. Journal of Southeast University, 2012, 42(2): 339-345.
[13] Matt S. Allen, Jerry H. Ginsberg, Aldo Ferri. Identification of very closely spaced modes using an iterative algorithm[J]. The Journal of the Acoustical Society of America, 2002, 112(5): 2382-2382.
[14] 赵晓丹, 张忠业, 骆 英. 基于内积运算与迭代算法的密集模态阻尼识别[J]. 农业机械学报, 2011, 42(4): 206-210.
Zhao Xiaodan, Zhang Zhongye, Luo Ying. Damping identification for closely spaced modes based on inner product calculation and iterative algorithm[J]. Journal of Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(4): 206-210.
[15] 郭懋正. 实变函数与泛函分析[M]. 北京: 北京大学出版社, 2005. 230-231
Guo Maozheng. Real variable function and functional analysis[M]. Beijing: Peking University press, 2005. 230-231               
[16] Tuong Q, Hyoung S, Byung R. Propulsive velocity optimization of 3-joint fish robot using genetic-hill climbing algorithm[J]. Journal of Bionic Engineering, 2009, 6(4): 415-429.
[17] Y Nie, Chung C Y, Xu N Z. System state estimation considering EV penetration with unknown behavior using quasi-Newton method[J]. IEEE Transactions on Power Syetem, 2016, 1(22): 4605-4615.
[18] 张 亮, 袁兆成, 黄 震. 流固耦合有限元法用于油底壳模态计算[J]. 振动与冲击, 2003, 22(4): 100-101.
Zhang Liang, Yuan Zhaocheng, Huang Zhen. Fluid_structure coupled fem applied in oilpan’s mode calculation[J]. Journal of Vibration and Shock, 2003, 22(4): 100-101.
PDF(1008 KB)

393

Accesses

0

Citation

Detail

Sections
Recommended

/