Effect of ply orientations on energy-absorbing characteristics of composite thin-walled Circular tubes under axial compression

XIE Jiang, MA Congyao,HUO YuJia, ZHOU Jian, Mou HaoLei, Feng ZhenYu

Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (20) : 200-206.

PDF(1452 KB)
PDF(1452 KB)
Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (20) : 200-206.

Effect of ply orientations on energy-absorbing characteristics of composite thin-walled Circular tubes under axial compression

  • XIE Jiang, MA Congyao,HUO YuJia, ZHOU Jian,  Mou HaoLei, Feng ZhenYu
Author information +
History +

Abstract

Aiming at revealing effect of ply orientations on energy-absorbing characteristics of T700/3234 composite thin-walled circular tubes under axial compression, the material properties were measured and quasi-static axial crush tests of thin-walled circular tubes were performed.The finite element model and analysis method of the composite tube were validated by comparing the experimental results of peak load and specific energy absorption of composite thin-walled circular tubes under axial compression.Based on the validated finite element model and analysis method, effect of ply orientations on energy-absorbing characteristics of composite thin-walled circular tubes under axial compression was discussed.The results show that the SEA increase almost linearly first, and then decreases to a certain extent with the ply orientations increase for composite thin-walled circular tubes under quasi-static axial compression.The initial peak load is the lowest and load efficiency is the highest when ply orientation is relatively ±45°, and it is easier to achieve progressive failure energy absorption stage.The research results can be used as a reference for the design of composite fiber plies and the finite element modeling of thin-walled composite structures.

Cite this article

Download Citations
XIE Jiang, MA Congyao,HUO YuJia, ZHOU Jian, Mou HaoLei, Feng ZhenYu. Effect of ply orientations on energy-absorbing characteristics of composite thin-walled Circular tubes under axial compression[J]. Journal of Vibration and Shock, 2018, 37(20): 200-206

References

[1] 塞尔吉奥・奥勒, SergioOller, 奥列尔等. 复合材料力学行为的数值模拟 [M]. 北京. 国防工业出版社, 2016.
[2] 牟让科, 刘小川. 民机机身结构和内部设施适坠性设计评估与验证指南 [M]. 西安. 西北工业大学出版社, 2016.
[3] Feraboli P, Wade B, Deleo F, et al. LS-DYNA MAT54 modeling of the axial crushing of a composite tape sinusoidal specimen [J]. Composites Part A Applied Science and Manufacturing, 2011, 42(11): 1809-1825.
[4] Feraboli P. Development of a corrugated test specimen for composite materials energy absorption [J]. Journal of Composite Material, 2008, 42(3): 229-256.
[5] Feraboli P. Development of a modified flat plate test and fixture specimen for composite materials crush energy absorption [J]. Journal of Composite Material, 2009, 43(19): 1967-1990.
[6] Feraboli P, Deleo F, Wade B, et al. Predictive modeling of an energy-absorbing sandwich structural concept using the building block approach [J]. Composites Part A Applied Science and Manufacturing, 2010, 41(6): 774-786.
[7] Farley G L. Crash energy absorbing composite sub-floor structure[C]. AIAA/ASME/ASCE/AHS 27th Structures, Structural Dynamics and Materials Conference, May 1986.
[8] Kindervater C M. Energy absorption of composites as an aspect of aircraft structural crash-resistance [M]. In: Fuller J, ed. Developments in the science and technology of composite materials. London: Elsevier Applied Science Publishers, 1990, 643-651.
[9] Farley G L. Energy absorption of composite materials [J]. Journal of Composite Materials, 1983, 17(3): 267-279.
[10] Keal. Post failure energy absorbing mechanisms of filament wound composite tubes [D]. University of Liverpool, 1983.
[11] Hull D. A unified approach to progressive crushing of fiber-reinforced composite tubes [J]. Composite Science and Technology, 1991, 40(4): 377-421.
[12] 冯振宇, 赵彦强, 陈艳芬等,含不确定性参数的复合材料薄壁结构吸能特性评估方法研究[J]. 振动与冲击, 2015, 34(12): 7-12.
FENG Zhen-yu, ZHAO Yan-qiang, CHEN Yan-fen, et al. Evaluation method for energy-absorbing composite structures with uncertain parameters [J]. Journal of Vibration And Shock, 2015, 34(12): 7-12.
[13] 解江, 冯振宇, 赵彦强等. 含随机不确定性参数复合材料薄壁结构吸能特性评估方法研究 [J]. 振动与冲击, 2015, 22(34): 109-114.
XIE Jiang, FENG Zhen-yu, ZHAO Yang-qiang, et al. Evaluation method based on probability for energy-absorbing composite structures with uncertain parameters [J]. Journal of Vibration and Shock, 2015, 34(22): 109-114.
[14] Mou H L, Zou T C, Feng Z Y, et al. Crashworthiness analysis and evaluation of fuselage section with sub-floor composite sinusoidal specimens [J]. Latin American Journal of Solids and Structures, 2016, 13(6): 1186-1202.
[15] 牟浩蕾, 邹田春, 杜月娟等. 复合材料波纹板轴向压溃仿真及机身框段适坠性分析 [J]. 航空材料学报, 2015, 35(4): 55-62.
MOU Hao-lei, ZOU Tian-chun, DU Yue-juan, et al. Simulation of axial crush characteristic of composite sinusoidal specimen and analysis of crashworthiness of fuselage section [J]. Journal of Aeronautical Materials, 2015, 35(4): 55-62.
[16] SONG Hong-wei, DU Xing-wen, ZHAO Gui-fan. Energy absorption behavior of double-chamfer triggered glass/epoxy circular tubes [J]. Journal of Composite Materials, 2002, 36(18): 2183-2198.
[17] SONG Hong-wei, DU Xing-wen. Off-axis crushing of GFRP tubes [J]. Composite Science and Technology, 2002, 62(15): 2065-2073.
[18] 谢志民, 万志敏, 杜星文. 低速冲击下复合材料圆柱壳的简化分析 [J]. 复合材料学报, 2000, 17(3): 87-91.
XIE Zhi-min, WAN Zhi-min, DU Xing-wen. Simplified analysis of composite cylindrical shells subjected to low velocity impact [J]. Acta Materiae Compositae Sinica, 2000, 17(3): 87-91.
[19] LSTC. LS-DYNA Theoretical Manual [M]. California: Livermore Software Technology Corporation, 2012.
 
PDF(1452 KB)

513

Accesses

0

Citation

Detail

Sections
Recommended

/