Crack detection method for wind turbine blades based on the method of multi-frequency harmonic modulation

GENG Xiaofeng1,2,WEI Kexiang1,2,WANG Qiong1,2,YANG Bowen1,L Qing1

Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (22) : 201-205.

PDF(1497 KB)
PDF(1497 KB)
Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (22) : 201-205.

Crack detection method for wind turbine blades based on the method of multi-frequency harmonic modulation

  • GENG Xiaofeng1,2,WEI Kexiang1,2,WANG Qiong1,2,YANG Bowen1,L Qing1
Author information +
History +

Abstract

The multi-frequency harmonic excitation is a nondestructive testing method, which detects crack damage by using the nonlinear modulation effects between low frequency vibration signals and high frequency ultrasonic wave signals.The nonlinear dynamic response characteristics of a 1 kW cracked wind turbine blade with different length and location of crack were investigated by the multi frequency excitation modulation experiments.The results show that, there are obvious nonlinear modulation phenomena in the cracked wind turbine blade, and with the increase of the crack length and the distance away from the root, the nonlinear modulation is obviously enhanced.The feasibility of the proposed method used to detect the early crack damage of wind turbine blades was verified by experiments.

Key words

Wind turbine blade / Crack damage / Multi frequency harmonic excitation / Nonlinear modulation

Cite this article

Download Citations
GENG Xiaofeng1,2,WEI Kexiang1,2,WANG Qiong1,2,YANG Bowen1,L Qing1. Crack detection method for wind turbine blades based on the method of multi-frequency harmonic modulation[J]. Journal of Vibration and Shock, 2018, 37(22): 201-205

References

[1] 曲戈, 陈长征, 赵新光, 周勃. 风力机叶片裂纹特征的小波尺度谱识别[J]. 沈阳工业大学学报, 2012, 34(1): 22-25
      QU Ge, CHEN Chang-zheng, ZHAO Xin-guang, ZHOU Bo. Wavelet scalogram identification for crack feature of wind turbine blade[J]. Journal of Shenyang University of Technology, 2012, 34(1): 22-25
[2] 马剑龙, 李佩林, 吕文春, 白叶飞, 张彦奇, 汪建文. 叶片应变随侧风角度变化的特征分析[J]. 振动与冲击, 2017, 36(1): 114-119
      MA Jian-long, LI Pei-lin, LV Wen-chun, BAI Ye-fei, ZHANG Yan-qi, WANG Jian-wen. Feature analysis of blade strain variation with crosswind angle[J]. JOURNAL OF VIBRATION AND SHOCK, 2017, 36(1): 114-119
[3] 傅程, 王延荣. 风力机叶片损伤演化模拟[J]. 太阳能学报, 2011, 32(1): 143-148
      FU Cheng, WANG Yan-rong. Damage Evolution Prediction of Wind Turbine Blades. ACTA ENERGIAE SOLARIS SUNCA[J], 2011, 32(1): 143-148
[4] 周正干, 刘斯明. 非线性无损检测技术的研究、应用和发展[J]. 机械工程学报, 2011, 47(8): 2-11
      ZHOU Zheng-gan, LIU Si-ming. Nonlinear Ultrasonic Techniques Used in Nondestructive Testing: A Review[J]. JOURNAL OF MECHANICAL ENGINEERING, 2011, 47(8): 2-11
[5] Duffour P., Morbidini M.,Cawley P.. A study of the vibro-acoustic modulation technique for the detection of cracks in metals. Journal of the Acoustical Society of America, 2006,119(3): 1463-1475
[6] Klepka A, Staszewski W J, Jenal R B, etal. Nonlinear acoustics for fatigue crack detection-experimental investigations of vibro-acoustic wave modulations [J]. Structual Health Monitoring, 2012, 11(2): 197-211
[7] Kim S, Adams D E, Sohn H. Crack detection on wind turbine blades in an operating environment using vibro-acoustic modulation technique [C]. AIP Conference Proceedings. Denver, America: American Institute of Physics, 2013,1511(1):286-293.
[8] Parsons Z., Staszewski W.J. Nonlinear acoustics with low-profile piezoceramic excitation for crack detection in metallic structures, Smart Materials and Structures, 2006, 15(4): 1110-1118
[9] Sohn H., Lim H J, DeSimio M P, etal. Nonlinear ultrasonic wave modulation for online fatigue crack detection [J]. Journal of Sound and Vibration, 2014, 333(5): 1473-1484
[10] 胡海峰, 胡茑庆, 秦国军. 非线性振动声调制信号耦合特征分析[J]. 机械工程学报, 2010, 46(23): 68-75
      HU Hai-feng, HU Niao-qing, QIN Guo-jun. Coupling Analysis of Nonlinear Vibro-acoustic Modulation Signals[J]. JOURNAL OF MECHANICAL ENGINEERING, 2010, 46(23): 68-75
[11] Dutta D., Sohn H., Harries K., Rizzo P..A Nonlinear acoustic technique for crack detection in metallic structures. Structural Health Monitoring, 2009,8(3): 251-262
[12] 廖泽平, 何清波, 邵勇. 基于非线性振动调制超声导波的悬臂梁结构的非线性损伤定位[J]. 机械与电子, 2016, 34(5): 18-19
      LIAO Ze-ping, HE Qing-bo, SHAO Yong. Nonliner Damage Localization in a Cantilever Beam Structure via Nonliner Vibration Modulation of Ultrasonic Guided Waves[J]. MACHINERY&ELECTRONICS, 2016, 34(5): 18-19
[13] 刘斌, 刚铁, 万楚豪, 罗志伟. 复杂结构焊缝的非线性超声检测方法[J]. 焊接学报, 2015, 36(3): 39-41
      LIU Bin, GANG Tie, WAN Chu-hao, LUO Zhi-wei. Nonlinear ultrasonic method for detecting weld of complicated Structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 015, 36(3): 39-41
PDF(1497 KB)

767

Accesses

0

Citation

Detail

Sections
Recommended

/