Error compensation for hysteresis nonlinearity of piezoelectric ceramic vibration sensors

CHEN Gaohua1,YAN Xianguo2,GUO Hong2,LI Zhifei1

Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (23) : 278-285.

PDF(1470 KB)
PDF(1470 KB)
Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (23) : 278-285.

Error compensation for hysteresis nonlinearity of piezoelectric ceramic vibration sensors

  • CHEN Gaohua1,YAN Xianguo2,GUO Hong2,LI Zhifei1
Author information +
History +

Abstract

The hysteresis nonlinearity of piezoelectric ceramic sensors affects detection accuracy in vibration measurement.Here,the micro-polarization mechanism of piezoelectric ceramics was analyzed and the reason why piezoelectric ceramic sensors have hysteresis nonlinearity was explained.In order to effectively compensate the hysteresis nonlinearity of piezoelectric ceramics and improve the detection accuracy,a modified Bouc-Wen model to reflect the asymmetric hysteresis feature of piezoelectric ceramic sensors was proposed.The effects of model parameters on magnitude,shape and stationarity of hysteresis curves were analyzed.The solving method of the inverse model was derived.The modified Bouc-Wen inverse model was taken as a compensator to compensate the hysteresis nonlinearity of piezoelectric ceramic sensors.The test results showed that after using the inverse compensation,the corrected displacement can always track the actual input displacement of the sensor to effectively guarantee its detection accuracy.

Key words

piezoceramic sensor / hysteresis nonlinearity / hysteresis model / inverse compensation / detection accuracy

Cite this article

Download Citations
CHEN Gaohua1,YAN Xianguo2,GUO Hong2,LI Zhifei1. Error compensation for hysteresis nonlinearity of piezoelectric ceramic vibration sensors[J]. Journal of Vibration and Shock, 2018, 37(23): 278-285

References

[1]JENNIONSIK. Integrated vehicle health management: perspectiveonan emerging field[M].
New York, USA: SAE International,2011:124-135.
[2]Yuan G, Wang D H, Li S D. Single piezoelectric ceramic stack actuator based fast steering mirror with fixed rotation axis and large excursion angle[J]. Sensors & Actuators A Physical, 2015, 235:292-299.
[3] Li W, Chen X. Compensation of hysteresis in piezoelectric actuators without dynamics modeling[J]. Sensors & Actuators A Physical, 2013, 199:89-97.
[4] 崔玉国,朱耀祥,娄军强等.压电微夹持钳钳指位移与夹持力的检测[J].光学 精密工程,2015,23(5): 1372-1379.
CUI Y G, ZHU Y X, LOU J Q, et al.Detection of finger displcement and gripping force of piezoelectric micro-gripper [J]. Optics and Precision Engineering, 2015, 23(5): 1372-1379.
[5] 方楚,郭劲,徐新行等.压电陶瓷迟滞非线性前馈补偿器[J].光学精密工程,2016, 24(09):2217-2223.
FANG C,GUO J,XU X X, et al.Compensating
controller for hysteresis nonlinear of piezoelectric ceramics[J]. Optics and Precision Engineering, 2016, 24(09):2217-2223.
[6] 聂泳忠,颜黄苹,黄元庆. 铋层状与铌酸锂复合压电陶瓷传感器的温度特性[J]. 厦门大学学报 ( 自然科学版 ),2016,55(03):441-444.
Nie Yongzhong, Yan Huangping, Huang Yuanqing. Temperature characteristics of a Bi4Ti3O12-LiNbO3 compound piezoelectric ceramic sensor[J]. Journal of Xiamen University(Natural Science), 2016,55(03):441-444.
[7]Juhdsz L, Maas J, Borovac B. Parameter identification and hysteresis compensation of embedded piezoelectric stack actuators[J]. Mechatronics, 2011, 21(1):329-338.
[8]郭士旭,余尚江,陈晋央等. 压电式压力传感器动态特性补偿技术研究[J]. 振动与冲击,2016,35(02):136-140.
GUO Shi-xu,YU Shang-jiang,CHEN Jin-yang, et al. Dynamic compensation technique for piezoelectric pressure sensors[J]. Journal of Vibration and Shock, 2016, 35(02):136-140.
[9]李以农,张锋,郑玲. 压电作动器的迟滞非线性建模和实时补偿控制仿真[J].功能材料,2009,40(08):1297-1301.
LI Y N, ZHANG F,ZHEN L. Modeling and real-time compensation control of nonlinear hysteresis for piezoelectric actuator[J]. Functional Materials,2009,
40(08):1297-1301.
[10] Mittal S, Menq C H. Hysteresis compensation in electromagnetic actuators through Preisach model inversion[J]. IEEE/ASME Transactions on Mechatronics, 2000, 5(4):394-409.
[11] Zirka S E, Moroz Y I, Marketos P, et al. Dynamic hysteresis modeling[J]. Physica B Condensed Matter, 2004, 343(1):90-95.
[12] Gaul L, Becker J. Model-based piezoelectric hysteresis and creep compensation for highly-dynamic feedforward rest-to-rest motion control of piezoelectrically actuated flexible structures[J]. International Journal of Engineering Science, 2009, 47(11–12):1193-1207.
[13]MARTIN B. Some mathematical properties of the preisach model for hysteresis [J]. Transcations on Magnetics.25(04):1989.
[14] Liu S, Su C Y. A modified generalized Prandtl-Ishlinskii model and its inverse for hysteresis compensation[C]//American Control Conference. 2013:4759-4764.
[15]BAHADUR I M, MILLS J K. A new model of hysteresis of piezoelectric actuators[C].Proceedings of the 2011 IEEE International Conference on Mechatronics and Automation,Beijing,China,2011.
[16]XIAO SH L, LI Y M. Dynamic compensation and H∞ control for piezoelectric actuators based on the inverse Bouc-Wen model[J].Robotics and Computer-Integrated Manufacturing,2014, 30:47-54.
[17] Gilberto A. Ortiz,Diego A. Alvarez,Daniel Bedoya-Ruíz. Identification of Bouc–Wen type models using the Transitional Markov Chain Monte Carlo method [J]. Computers and Structures, 2015,146:252-269.
[18] 张福学. 现代压电学[M].北京: 科学出版社,2003.
ZHANG F X. Modern piezoelectricity[M].Beijing: Science Press,2003.
[19] Mohammad Asif Zaman, Urmita Sikder. Bouc–Wen hysteresis model identification using Modified Firefly Algorithm [J]. Journal of Magnetism and Magnetic Materials, 2015,229-233.
[20] Xin B, Chen J, Zhang J, et al. Hybridizing Differential Evolution and Particle Swarm Optimization to Design Powerful Optimizers: A Review and Taxonomy[J]. IEEE Transactions on Systems Man & Cybernetics Part C, 2012, 42(5):744-767.
PDF(1470 KB)

1269

Accesses

0

Citation

Detail

Sections
Recommended

/