Acceleration response first passage failure probability analysis for a nonlinear package

ZHU Dapeng

Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (24) : 166-171.

PDF(1051 KB)
PDF(1051 KB)
Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (24) : 166-171.

Acceleration response first passage failure probability analysis for a nonlinear package

  • ZHU Dapeng
Author information +
History +

Abstract

An acceleration response first passage failure probability estimation method for nonlinear package excited by random base excitation was presented in this paper.The random vibration excitation was presented in normal random variable space, an analytical method was used to obtain the first passage probability.The design point is essential information for the failure probability analysis.The model correction factor method (MCFM) was used to develop an approach to approximately obtain the design point, since the MCFM always provide upper bound to the reliability index, the parameters of idealized system were determined by minimizing its reliability index.The acceleration response first passage failure probability can be estimated by the first order reliability method.An example was presented in this paper to demonstrate the accuracy of the method.The method in paper is important for the vibration reliability analysis and design optimization of the package.

Key words

nonlinear package / first passage failure / model correction factor method / first order reliability method

Cite this article

Download Citations
ZHU Dapeng . Acceleration response first passage failure probability analysis for a nonlinear package[J]. Journal of Vibration and Shock, 2018, 37(24): 166-171

References

[1] Wang Zhi-Wei, Jiang Jiu-Hong. Evaluation of product dropping damage based on key component[J]. Packaging Technology and Science, 2010, 23(4):227-238.
[2] Jiang Jiu-Hong, Wang Zhi-Wei. Dropping damage boundary curves for cubic and hyperbolic tangent packaging systems based on key component[J]. Packaging Technology and Science, 2012, 25(7):397-411.
[3] 王军,王志伟. 半正弦脉冲激励下考虑易损件的正切型包装系统冲击特性研究[J]. 振动与冲击,2008,27(1):167-168.
WANG Jun, WANG Zhi-wei. 3-dimensional shock response spectra characterizing shock response of a tangent packaging system with critical components[J]. Shock and Vibration, 2008,27(1):167-168.
[4] 王军,王志伟. 考虑易损件的正切型包装系统冲击破损边界曲面研究[J]. 振动与冲击,2008,27(2):166-167.
WANG Jun, WANG Zhi-wei. Damage boundary surface of a tangent nonlinear packaging system with critical component[J]. Shock and Vibration, 2008,27(2):166-167.
[5] 黄秀玲,王军,卢立新等. 三次非线性包装系统关键部件冲击响应影响因素分析[J]. 振动与冲击,2010,29(10):179-181.
HUANG Xiu-ling, WANG Jun,  LU Li-xin et al. Factors influencing shock characteristics of a cubic nonlinear packaging system with critical component[J]. Shock and Vibration, 2010,29(10):179-181.
[6] 王军,卢立新,王志伟. 双曲正切包装系统关键部件三维冲击谱研究[J]. 振动与冲击,2010,29(10):99-101.
WANG Jun, LU Li-xin, WANG Zhi-wei. Three-dimensional shock spectrum of a hyperbolic tangent nonlinear packaging system with critical component[J]. Shock and Vibration, 2010,29(10):99-101.
[7] 王军,王志伟. 多层堆码包装系统冲击动力学特性研究(Ⅰ):冲击谱[J]. 振动与冲击,2008,27(8):106-107.
WANG Jun, WANG Zhi-wei. Combined shock spectrum of linear stacking packaging system(Ⅰ): shock spectrum[J]. Shock and Vibration, 2008,27(8):106-107.
[8] 王军,王志伟. 多层堆码包装系统冲击动力学特性研究(Ⅱ):破损边界[J]. 振动与冲击,2008,27(8):108-109.
WANG Jun, WANG Zhi-wei. Combined shock spectrum of linear stacking packaging system(Ⅱ): damage boundary [J]. Shock and Vibration 2008,27(8):108-109.
[9] Kitazawa H., Saito K., and Ishikawa Y. Effect of difference in acceleration and velocity change on product damage due to repetitive shock[J]. Packaging Technology and Science, 2014, 27(3):221-230.
[10] Daum M. P. Combining a fatigue model with a shock response spectrum algorithm[J]. Journal of Testing and Evaluation,2004, 32(5): 1-5.
[11] 高德,卢富德. 具有转动包装系统的正切非线性模型冲击响应研究[J]. 振动与冲击, 2010,29(10):131-136.
GAO De, LU Fu-de. Shock response of a nonlinear tangent packaging system with rotation[J]. Shock and Vibration, 2010, 29(10):131-136.
[12]高德,卢富德. 考虑转动的双曲正切与正切组合模型缓冲系统冲击响应研究[J]. 振动工程学报, 2012, 25(1):6-11.
GAO De, LU Fu-de. The shock response of hyperbolic tangent and tangent comprehensive model on cushion system considering rotary motion[J]. Journal of Vibration Engineering, 2012, 25(1):6-11.
[13] 陈安军. 非线性包装系统跌落冲击问题变分迭代法[J]. 振动与冲击, 2013,32(18):105-107.
CHEN An-jun. Variational iteration method for dropping shock problem of a cubic non-linear packaging system[J]. Shock and Vibration, 2013,32(18):105-107.
[14] Kiureghian A. D. The geometry of random vibrations and solutions by FORM and SORM [J].Probabilistic Engineering Mechanics. 2000, 15(1):81-90.
[15] Olsen A. I, Naess A. An importance sampling procedure for estimating failure probabilities of non-linear dynamic systems subjected to random noise[J]. International Journal of Non-Linear Mechanics, 2007, 42(6):848-863.
[16] Alibrandi, U. A response surface method for stochastic dynamic analysis[J]. Reliability Engineering and System Safety. 2014, 126:44-53.
[17] Fujimura K, Kiureghian A. D. Tail-equivalent linearization method for nonlinear random vibration[J]. Probabilistic Engineering Mechanics. 2007, 22(1):63-76.
[18] Soong T.T, Grigoriu M. Random Vibration of Mechanical and Structural Systems[M], Prentice-Hall, Inc., Englewood Cliffs, NJ, 1997.
[19] Koo H,  Kiureghian A.D, Fujimura K., Design-point excitation for non-linear random variables[J]. Probabilistic Engineering Mechanics. 2005, 20(2): 136–147.
[20] Ditlevsen O, Arnbjerg-Nielsen T. Model correction factor method in structural reliability[J]. Journal of Engineering Mechanics. 1994, 120(1):1-10.
[21] Alibrandi U, Kiureghian A.D. A gradient-free method for determining the design point in nonlinear stochastic dynamic analysis[J]. Probabilistic Engineering Mechanics. 2012, 28(4):2-10.
[22] 朱大鹏, 李明月. 铁路非高斯随机振动的数字模拟与包装件响应分析[J]. 包装工程. 2016, 37(1):1-5.
ZHU Da-peng, LI Ming-yue. Digital simulation of non-Gaussian random vibration of railway and packaging system response analysis[J]. Packaging Engineering. 2016, 37(1):1-5.
[23] Fujimura K. Tail equivalent linearization method for nonlinear random vibration[D]. Berkeley: University of California, Berkeley, 2006.
[24] Broccardo M. Further development of the tail-equivalent linearization method for nonlinear stochastic dynamics[D]. Berkeley: University of California, Berkeley, 2014.
PDF(1051 KB)

460

Accesses

0

Citation

Detail

Sections
Recommended

/