[1] FENG Z and ZUO M J. Vibration signal models for fault diagnosis of planetary gearboxes[J]. Journal of Sound and Vibration. 2012,331(22):4919-4939
[2] LEI Y G, LI N P, GONTARZ S, et al. A Model-Based Method for Remaining Useful Life Prediction of Machinery[J]. Ieee Transactions on Reliability. 2016,65(3):1314-1326
[3] LIANG X, ZUO M J, and HOSEINI M R. Vibration signal modeling of a planetary gear set for tooth crack detection[J]. Engineering Failure Analysis. 2015,48:185-200
[4] TIAN Z, WONG L, and SAFAEI N. A neural network approach for remaining useful life prediction utilizing both failure and suspension histories[J]. Mechanical Systems and Signal Processing. 2010,24(5):1542-1555
[5] TRAN V T, THOM PHAM H, YANG B-S, et al. Machine performance degradation assessment and remaining useful life prediction using proportional hazard model and support vector machine[J]. Mechanical Systems and Signal Processing. 2012,32:320-330
[6] GEBRAEEL N Z, LAWLEY M A, LI R, et al. Residual-life distributions from component degradation signals: A Bayesian approach[J]. IiE Transactions. 2005,37(6):543-557
[7] SI X-S. An adaptive prognostic approach via nonlinear degradation modeling: application to battery data[J]. IEEE Transactions on Industrial Electronics. 2015,62(8):5082-5096
[8] WANG Y, PENG Y, ZI Y, et al. A Two-Stage Data-Driven-Based Prognostic Approach for Bearing Degradation Problem[J]. Ieee Transactions on Industrial Informatics. 2016,12(3):924-932
[9] SINGLETON R K, II, STRANGAS E G, and AVIYENTE S. Extended Kalman Filtering for Remaining-Useful-Life Estimation of Bearings[J]. Ieee Transactions on Industrial Electronics. 2015,62(3):1781-1790
[10] LI N P, LEI Y G, LIN J, et al. An Improved Exponential Model for Predicting Remaining Useful Life of Rolling Element Bearings[J]. Ieee Transactions on Industrial Electronics. 2015,62(12):7762-7773
[11] ORCHARD M E and VACHTSEVANOS G J. A particle filtering approach for on-line failure prognosis in a planetary carrier plate[J]. International Journal of Fuzzy Logic and Intelligent Systems. 2007,7(4):221-227
[12] YAGUO L, NAIPENG L, and JING L. A new method based on stochastic process models for machine remaining useful life prediction[J]. IEEE Transactions on Instrumentation and Measurement. 2016,65(12):2671-2684
[13] VAN DER MERWE R, DOUCET A, DE FREITAS N, et al. The unscented particle filter[C]. NIPS, 2000:584-590
[14] AN D, CHOI J-H, and KIM N H. Prognostics 101: A tutorial for particle filter-based prognostics algorithm using Matlab[J]. Reliability Engineering & System Safety. 2013,115:161-169
[15] SMITH W A and RANDALL R B. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study[J]. Mechanical Systems and Signal Processing. 2015,64-65:100-131
[16] NECTOUX P, GOURIVEAU R, MEDJAHER K, et al. PRONOSTIA: An experimental platform for bearings accelerated degradation tests[C]. IEEE International Conference on Prognostics and Health Management, PHM'12., IEEE Catalog Number: CPF12PHM-CDR,2012:1-8
[17] ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. Ieee Transactions on Signal Processing. 2002,50(2):174-188