Influence of sense stiffness nonlinearity on the sensitivity stability of a double-sense micro-gyroscope

HAO Shu-ying 1,2 LI Hui-jie 1,2 ZHANG Chen-qing 1,2 ZHANG Qi-chang 3 FENG Jing-jing 1,2 LI Lei 3

Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (24) : 46-52.

PDF(1946 KB)
PDF(1946 KB)
Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (24) : 46-52.

Influence of sense stiffness nonlinearity on the sensitivity stability of a double-sense micro-gyroscope

  • HAO Shu-ying 1,2 LI Hui-jie 1,2 ZHANG Chen-qing 1,2 ZHANG Qi-chang 3 FENG Jing-jing 1,2 LI Lei 3
Author information +
History +

Abstract

To reveal the influence of stiffness nonlinearity on the stability and accuracy of double-sense micro-gyroscope sensitivity, firstly, the linear response of a double-sense equation was solved by using the complex exponential method.Secondly, the multi-scale method was used to analyze the nonlinear dynamic equation considering the influence of the Coriolis force on the sense output.An effective method to deal with the coupling term of high-dimensional nonlinear equations was proposed.The influence of the sense nonlinearity stiffness on the amplitude-frequency curve and the resonance frequency were studied.It is found that the sense nonlinearity stiffness causes the complex nonlinear behavior such as hardening, amplitude jumping, multiple solutions and resonance frequency shift, which leads to the instability of the micro-gyroscope sensitivity.The stability of the micro-gyroscope sensitivity and the unsteady bandwidth range are very sensitive to stiffness nonlinearity.When the stiffness nonlinearity reaches a certain value, its small growth will also seriously affect the stability of the micro-gyroscope sensitivity and increase the bandwidth instability range, which leads to linear system design failure.

Key words

double sense micro-gyroscope / complex exponential method / stiffness nonlinearity / amplitude jump / sensitivity

Cite this article

Download Citations
HAO Shu-ying 1,2 LI Hui-jie 1,2 ZHANG Chen-qing 1,2 ZHANG Qi-chang 3 FENG Jing-jing 1,2 LI Lei 3. Influence of sense stiffness nonlinearity on the sensitivity stability of a double-sense micro-gyroscope[J]. Journal of Vibration and Shock, 2018, 37(24): 46-52

References

[1] 刘危,解旭辉,李圣怡. 微机械惯性传感器的技术现状及展望[J]. 光学精密工程,2003, 11(5): 425-431.
LIU Wei, XIE Xu-hui, LI Sheng-yi. Present state and perspectives of micromachined inertial sensors [J]. Optics and Precision Engineering, 2003, 11(5): 425-431.
[2] 朱二辉. 微机械陀螺的动力学特性研究[D]. 西安:西安理工大学,2006.
ZHU Er-hui. Micro-mechanical gyroscope dynamic characteristics [D]. Xi'an: Xi'an University of Technology, 2006.
[3] F Braghin, F Resta, E Leo, etal. Nonlinear dynamics   of Vibrating MEMS [J]. Sensors & Actuators A Physical, 2007, 134(1):98-108.
[4] 高嵘,王小静,张效翔等. 计入空气阻尼的MEMS微谐振器 非线性动力学研究[J]. 传感技术学报,2006, 19(5): 1354-1357.
GAO Rong, WANG Xiao-jing, ZHANG Xiao-xiang,et al. Study on Nonlinear Dynamics of MEMS Microresonator Considering Air Damping [J]. Chinese Journal of Sensors and Actuators, 2006, 19 (5): 1354-1357.
[5] 文永蓬,尚慧琳. 微陀螺动力学建模与非线性分析[J]. 振动与冲击,2015, 34(4): 70-73.
WEN Yong-peng, SHANG Hui-lin. Micro gyroscope dynamics modeling and nonlinear analysis [J]. Journal of Vibration and Shock, 2015, 34(4): 70-73.
[6] SIEWE M S, HEGAZY UH. Homoclinic bifurcation and chaos control in MEMS resonators [J]. Applied Mathematical Modelling, 2011, 35(12): 5533-5552.
[7] TSAI N C, SUE C Y. Stability and resonance of micro-machined gyroscope under nonlinearity effects [J]. Nonlinear Dynamics, 2009, 56(4): 369-379.
[8] MIANDOAB E M , PISHKENARI H N . Chaos prediction in MEMS NEMS resonators [J]. International Journal of Engineering Science, 2014, 82(3):74-83.
[9] 尚慧琳,张涛,文永蓬. 驱动微陀螺系统的非线性振动特性研究[J]. 振动与冲击,2017, 36(1):102-107.
SHANG Hui-lin, ZHANG Tao, WEN Yong-peng. Nonlinear vibration behaviors of a micro-gyroscope system actuated by a parametric excitation [J].Journal of Vibration and Shock, 2017, 36(1):102-107.
[10] ACAR C, SHKEL A M. Nonresonant micromachined gyroscopes with structural mode-decoupling [J]. IEEE Sensors Journal, 2008, 3(4): 497-506.
[11] JEON S H, LEE J Y, JUNG H K,et al. Two-mass system with wide bandwidth for SiOG ( silicon on glass) vibratory gyroscopes [J]. International Conference on Solid-state Sensors , 2005, 1(1): 539-542.
[12] 朱奎宝,杨拥军,李博等. 一种新型三自由度谐振式MEMS陀螺[J]. MEMS器件与技术,2009, 46(12): 730-734.
ZHU Kui-bao, YANG Yong-jun, LI Bo, et al. A New three-Degree-of-Freedom Resonant MEMS Gyroscope [J]. MEMS Devices and Technology, 2009, 46(12): 730-734.
[13] 郝燕玲,刘博,胡钰. 多自由度微陀螺结构参数对其动态性能影响分析[J]. 哈尔滨工程大学学报,2014, 35(11):1378-1383.
HAO Yan-ling, LIU Bo, HU Yu. Analysis of the influence of the multiple degree of freedom MEMS gyroscope structural parameters on the performance [J]. Journal of Harbin Engineering University, 2014, 35(11):1378-1383.
[14] 王浩. 双解耦双自由度微机械陀螺的设计与仿真[D]. 哈尔滨:哈尔滨工业大学,2007.
WANG Hao. Design and simulation of double decoupled two-degree-of-freedom micromechanical gyroscope [D]. Harbin: Harbin Institute of Technology, 2007.
[15] ESMAEILI A, KUPAEI M A FAGHIHIAN H, et al. An adaptable broadband MEMS vibratory gyroscope by simultaneous optimization of robustness and sensitivity parameters [J]. Sensors and Actuators A Physical, 2014, 206 (3): 132-137.
PDF(1946 KB)

719

Accesses

0

Citation

Detail

Sections
Recommended

/