Simulation for dynamic response of a vessel with a preformed hole under internal explosion using FEM-SPH coupled algorithm

HU Tingxun, HU Dean

Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (3) : 210-216.

PDF(2096 KB)
PDF(2096 KB)
Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (3) : 210-216.

Simulation for dynamic response of a vessel with a preformed hole under internal explosion using FEM-SPH coupled algorithm

  • HU Tingxun,  HU Dean
Author information +
History +

Abstract

Dynamic response of a vessel with a preformed hole under inner explosion was simulated using the 3D adaptive FEM-SPH coupled algorithm considering the effect of air inside the container. Failure characteristic parameters obtained with simulation agreed well with those gained in tests. Moreover, the results obtained using the ALE algorithm in LS-DYNA software were compared with those using the adaptive FEM-SPH coupled algorithm. It was shown that the adaptive FEM-SPH coupled algorithm can effectively reproduce the process of vessel’s inner explosion bulges, the process of preformed hole failure and air movement in vessel under internal explosion load; it provides an effective study way for the numerical simulation of internal explosion problems of vessels.



Key words

 internal explosion vessel / explosion / preformed hole / FEM-SPH coupled algorithm / ALE algorithm

Cite this article

Download Citations
HU Tingxun, HU Dean. Simulation for dynamic response of a vessel with a preformed hole under internal explosion using FEM-SPH coupled algorithm[J]. Journal of Vibration and Shock, 2018, 37(3): 210-216

References

[1] 胡八一, 周刚, 郑津洋,等. 爆炸容器研究及应用最新进展评述[C]// 压力容器先进技术-第七届全国压力容器学术会议论文集. 2009.
Hu Bayi, Zhou Gang, Zheng Jinyang, et al. The research application advance survey of explosive chamber [C]// A review of the advanced technology of  pressure vessels - the Seventh National Symposium on pressure vessels. 2009
[2] Liu M B, Liu G R, Zong Z, et al. Computer simulation of high explosive explosion using   smoothed particle hydrodynamics methodology[J]. Computers & Fluids, 2003, 32(3):305-322.
[3] Johnson G R, Stryk R A. Conversion of 3D distorted elements into meshless particles during dynamic deformation[J]. International Journal of Impact Engineering, 2003, 28: 947-966.
[4] Johnson G R. Numerical algorithms and material models for high-velocity impact computations[J]. International Journal of Impact Engineering, 2011, 38(6): 456-472.
[5] 王吉, 王肖钧, 卞梁. 光滑粒子法与有限元的耦合算法及其在冲击动力学中的应用[J]. 爆炸与冲击, 2008, 27(6):522-528.
Wang Ji, Wang Xiao Jun, Bian Liang. Linking of smoothed particle hydrodynamics method to standard finite element method and its application in impact dynamics [J]. Explosion And Shock Waves, 2008, 27 (6): 522-528.
[6] 胡德安, 孙占华, 朱婷. 三维自适应FE-SPH耦合算法在多层间隔金属靶侵彻问题中的应用[J] 爆炸与冲击, 2015, 35(3):416-422.
Hu Dean, Sun Zhanhua, Zhu Ting. Application of 3D FE-SPH adaptive coupling algorithm to penetration analysis of spaced multi-layered metallic targets [J] Explosion and Shock Waves, 2015, 35(3): 416-422.
[7] Ma L, Hu Y, Zheng J, et al. Failure analysis for cylindrical explosion containment vessels[J]. Engineering Failure Analysis, 2010, 17(5):1221–1229.
[8] Ma L, Xin J, Hu Y, et al. Ductile and brittle failure assessment of containment vessels subjected to internal blast loading[J]. International Journal of Impact Engineering, 2013, 52:28-36.
[9] 辛健, 马利, 胡洋,等. 内爆载荷作用下不锈钢圆柱壳的断裂失效分析[J]. 压力容器, 2013, 30(2):66-72.
Xin Jian, Ma Li, Hu Yang, et al. Fracture Analysis of Stainless Steel Tube under Internal Blasting Loading [J]. Pressure Vessel Technology, 2013, 30(2): 66-72.
[10] Liu G R, Liu M B. Smoothed particle hydrodynamics: a meshfree particle method[M]. World Scientific, 2003. 298-300.
[11] 杨秀敏. 爆炸冲击现象数值模拟[M]. 中国科学技术大学出版社, 2010.
Yang Xiumin. Numerical simulation for Explosion and phenomenon [M]. Publishing House of University of Science & Technology China, 2010
[12] Johnson G R. Linking of Lagrangian particle methods to standard finite element methods for high velocity impact simulations[J]. Nuclear Engineering and Design, 1994, 150(2-3): 265-274.
[13] Johnson G R, Stryk R A. Symmetric contact and sliding interface algorithms for intense impulsive loading computations[J]. Computer Methods in Applied Mechanics & Engineering, 2001, 190(35):4531–4549.
[14] Johnson G R, Stryk R A, Beissel S R, et al. An algorithm to automatically convert distorted finite elements into meshless particles during dynamic deformation[J]. International Journal of Impact Engineering, 2002, 27(10):997-1013.
[15] Campbell J, Vignjevic R, Libersky L. A contact algorithm for smoothed particle hydrodynamics[J]. Computer Methods in Applied Mechanics & Engineering, 2000, 184(1):49-65.
[16] Lindholm U S, Johnson G R. Strain-rate effects in metals at large shear strains[J]. Springer US, 1983: 61-79.
[17] 周光坰. 流体力学. 上册[M]. 高等教育出版社, 2000.
 Zhou Guangjiong. Fluid mechanics. I [M]. Higher Education Press, 2000
[18] 胡八一, 柏劲松, 张明,等. 真实爆炸容器壳体动力响应的强度分析[J]. 应用力学学报, 2001, 18(03):91-95.
Hu Bayi, Bai Jinsong, Zhang Ming, et al. The dynamic response analysis of a real explosion-container vessel [J]. Chinese Journal of Applied Mechanics, 2001, 18 (03): 91-95.
PDF(2096 KB)

Accesses

Citation

Detail

Sections
Recommended

/