Dynamic behaviors and mechanisms analysis of nonlinear relative rotation system

HAN Qingzhen 1 HE Ren 1

Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (4) : 49-54.

PDF(2396 KB)
PDF(2396 KB)
Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (4) : 49-54.

Dynamic behaviors and mechanisms analysis of nonlinear relative rotation system

  •   HAN Qingzhen 1  HE Ren 1
Author information +
History +

Abstract

The dynamic behaviors of nonlinear relative rotation system with nonlinear stiffness is studied. The torque perturbation is made as control parameter, and the equilibrium’s stability of the torsional vibration system is judged by the Routh-Hurwitz criterion. The bifurcation theory is used to analysis the bifurcation behaviors of the equilibrium, and the condition of Fold bifurcation of the equilibrium is derived. The bifurcation set of the equilibrium on the parameter plane is obtained by simulation, and the stability of equilibrium in different parameter regions are studied. The global dynamic behaviors of torsional vibration system are studied by the bifurcation map and period three motion and chaotic motion are obtained. Symmetric and asymmetric fold/fold burstings are obtained by adjusting the quadratic nonlinear stiffness coefficient.

Key words

relative rotation / nonlinear / bifurcation / equilibrium

Cite this article

Download Citations
HAN Qingzhen 1 HE Ren 1. Dynamic behaviors and mechanisms analysis of nonlinear relative rotation system[J]. Journal of Vibration and Shock, 2018, 37(4): 49-54

References

[1] VERICHEV N N. Chaotic torsional vibration of imbalanced shaft driven by a limited power supply[J]. Journal of Sound & Vibration, 2012, 331(2):384–393.
 [2] BULUT G. Dynamic stability analysis of torsional vibrations of a shaft system connected by a Hooke’s joint through a continuous system model[J]. Journal of Sound & Vibration, 2014, 333(16):3691-3701.
 [3] XIA Minglu, SUN Qingping. Jump phenomena of rotational angle and temperature of NiTi wire in nonlinear torsional vibration[J]. International Journal of Solids & Structures, 2014, 56-57:220-234.
 [4] 张立军, 司杨, 余卓平. 燃料电池轿车动力传动系统非线性动态特性仿真分析[J]. 机械工程学报, 2009, 45 (2): 62-67.
     ZHANG Lijun, SI Yang, YU Zhuoping. Numerical investigation into nonlinear dynamical characteristics of fuel cell vehicle powertrain system[J]. Journal of mechanical engineering, 2009, 45(2): 62-67.
 [5] 时培明, 夏克伟, 刘彬,等. 含间隙多自由度轧机传动系统非线性扭振动力特性[J]. 机械工程学报, 2012, 48(17):57-64.
     SHI Peiming, XIA Kewei, LIU Bin, et al. Dynamics behaviors of rolling mill’s nonlinear torsional vibration of multi-degree-of-freedom main drive system with clearance[J]. Journal of mechanical engineering, 2012, 48(17):57-64.
 [6] Chen Xing, Hu Jibin, Peng Zengxiong, et al. Nonlinear torsional vibration characteristics of PMSM for HEV considering electromagnetic excitation[J]. International Journal of Applied Electromagnetics & Mechanics, 2015, 49(1):9-21.
[7] 侯东晓, 刘彬, 时培明,等. 两自由度轧机非线性扭振系统的振动特性及失稳研究[J]. 振动与冲击, 2012, 31(3):32-36.
 HOU Dongxiao, LIU Bin, SHI Peiming, et al. Vibration characteristic of 2 DOF nonlinear torsional vibration system of rolling mill and its conditions of instability [J]. Journal of vibration and shock, 2012, 31(3):32-36.
[8] 尚慧琳,李伟阳,韩元波. 一类相对转动系统的复杂运动及时滞速度反馈控制[J]. 振动与冲击, 2015, 34(12): 127-132.
SHANG Hui-lin LI Wei-yang HAN Yuan-bo.  The complex dynamics of a relative rotation system and its control by delay velocity feedback. JOURNAL OF VIBRATION AND SHOCK, 2015, 34(12): 127-132.
[9] Izhikevich E M. Neural excitability, spiking, and bursting[J]. International Journal of Bifurcation and chaos, 2000, 10: 1171-1266.
[10] 张晓芳, 韩清振, 陈小可,等. 慢变控制下Chen系统的复杂行为及其机理[J]. 物理学报, 2014, 63(18): 180503-180503
     ZHANG Xiaofang, HAN Qingzhen, Chen Xiaoke, et al. Complicated behavior and mechanism of Chen system with slowly variable control[J]. Acta Phys Sin, 2014, 63(18): 180503-180503.
[11] BI Qinsheng, ZHANG Zhengdi. Bursting phenomena as well as the bifurcation mechanism in controlled Lorenz oscillator with two time scales[J]. Physics Letters A, 2011, 375(375):1183-1190.
[12] Han Xiujing, BI Qinsheng. Bursting oscillations in Duffing’s equation with slowly changing external forcing[J]. Communications in Nonlinear Science & Numerical Simulation, 2011, 16(10):4146-4152.
[13] 时培明,李纪召,刘彬,韩东颖. 一类准周期参激非线性扭振系统的周期簇发[J].振动与冲击, 2012, 31(4): 100-104.
SHI Pei-ming;LI Ji-zhao; LIU Bin; HAN Dong-ying. Periodic bursting of a nonlinear torsional vibration system under quasic-periodic parametric excitation[J]. Journal of vibration and shock, 2012, 31(4): 100-104.
PDF(2396 KB)

Accesses

Citation

Detail

Sections
Recommended

/