Vibration characteristics analysis and crack identification for a truss core sandwich beam with skin crack

CHEN Jian-en, SHI Yue-qi, LIU Jun, GE Wei-min, WANG Xiao-feng

Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (5) : 155-162.

PDF(1500 KB)
PDF(1500 KB)
Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (5) : 155-162.

Vibration characteristics analysis and crack identification for a truss core sandwich beam with skin crack

  • CHEN Jian-en, SHI Yue-qi, LIU Jun, GE Wei-min, WANG Xiao-feng
Author information +
History +

Abstract

Vibrations of a pyramidal truss core sandwich beam with a skin breathing crack were investigated. Based on the zig-zag theory of sandwich structures, considering stiffness’s periodic variation due to breathing effect of crack, the system’s dynamic equations were derived. The effects of crack’s depth and location on the system’s natural frequencies were analyzed, and the influences of crack parameters on forced vibration responses of the sandwich beam were investigated with frequency response curves, waveforms and phase diagrams. The results indicated that super-harmonic responses of the sandwich beam are sensitive to crack parameters; geometric features of phase diagrams can be used to identify crack parameters.



Key words

 vibration analysis / truss core sandwich structure / breathing crack / additional flexibility

Cite this article

Download Citations
CHEN Jian-en, SHI Yue-qi, LIU Jun, GE Wei-min, WANG Xiao-feng. Vibration characteristics analysis and crack identification for a truss core sandwich beam with skin crack[J]. Journal of Vibration and Shock, 2018, 37(5): 155-162

References

[1] 曾嵩, 朱荣, 姜炜, 等. 金属点阵材料的研究进展[J]. 材料导报A: 综述篇, 2012, 26(3): 18-23.
   Zeng S, Zhu R, Jiang W, et al. Research progress of metal lattice truss materials[J]. Materials Review A: summarization, 2012, 26(3): 18-23.
[2] 卢天健, 何德坪, 陈常青, 等. 超轻多孔金属材料的多功能特性及应用[J]. 力学进展, 2006, 36(4): 517-535.
   Lu T J, He D P, Chen C Q, et al. The multifunctional characteristics of ultra-light porous metal materials and its application[J]. Advances in Mechanics, 2006, 36(4): 517-535.
[3] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-12.
   Du S Y. Advanced composite materials and aerospace[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12.
[4] Kant T, Swaminathan K. Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory[J]. Composite Structures, 2001, 53(1): 73-85.
[5] Alijani F, Amabili M. Nonlinear vibrations of laminated and sandwich rectangular plates with free edges. Part 1: Theory and numerical simulations[J]. Composite Structures, 2013, 105: 422-436.
[6] Alijani F, Amabili M, Ferrari G, et al. Nonlinear vibrations of laminated and sandwich rectangular plates with free edges. Part 2: Experiments & comparisons[J]. Composite Structures, 2013, 105: 437-445.
[7] Zhang J, Ashby M F. Buckling of honeycombs under in-plane biaxial stresses [J]. International Journal of Mechanical Sciences, 1992, 34(6): 491-509.
[8] Jaouena L, Brouarda B, Atallab N, et al. A simplified numerical model for a plate backed by a thin foam layer in the low frequency range[J]. Journal of Sound and Vibration, 2005, 280: 681–698.
[9] 郑华勇,吴林志,马 力,等. Kagome点阵夹芯板的抗冲击性能研究[J]. 工程力学学报,2007,24(8):86-92.
   Zheng H Y, Wu L Z, Ma L, et al. Research on impulse-resistant performance of sandwich panels with kagome truss core[J]. Engineering    Mechanics, 2007, 24(8): 86-92.
[10] 娄佳, 马力, 吴林志. 复合材料四面体点阵夹芯梁的自由振动分析[J]. 固体力学学报, 2011, 32(4): 339-345.
   Lou J, Ma L, Wu L Z. Free vibration analysis of composite sandwich beam with tetrahedral lattice truss core[J]. Acta Mechanica Solida Sinica, 2011, 32(4): 339-345.
[11] Chen J E, Zhang W, Liu J, Sun M. Dynamic properties of truss core sandwich plate with tetrahedral core[J]. Composite Structures, 2015, 134: 869-882.
[12] 余志刚, 褚福磊. 基于高阶有限元方法的裂纹斜梁振动特性分析[J]. 振动与冲击, 2008, 27(10): 46-50.
[13] 胡家顺,冯新,周晶. 含非贯穿直裂纹管道的振动特性分析[J]. 振动与冲击, 2011, 30(4): 21-25.
[14] 刘政,王建军. 呼吸性裂纹转子的瞬态振动特性分析[J]. 振动与冲击, 2016, 35(7): 233-240.
[15] Ke L L, Yang J, Kitipornchai S. Flexural vibration and elastic buckling of a cracked Timoshenko beam made of functionally graded materials[J]. Mechanics of Advanced Materials and Structures, 2009, 16(6): 488-502.
[16] Kisa M, Brandon J. The effects of closure of cracks on the dynamics of a cracked cantilever beam[J]. Journal of Sound and Vibration, 2000, 238(1): 1-18.
[17] Rytter A. Vibrational Based Inspection of Civil Engineering Structures[D]. Denmark: University of Aalborg, 1993.
[18] Cheng S M, Wu X J, Wallace W. Vibrational response of a beam with a breathing crack[J]. Journal of Sound and Vibration, 1999, 225(1): 201-208.
[19] Deshpande V S, Fleck N A. Collapse of truss core sandwich beams in 3-point bending[J]. Journal of Solids and Structures, 2001, 38(36-37): 6275-6305.
[20] Mousa R, Reza H. Free vibration analysis of simply supported bean with breathing crack using perturbation method[J]. Acta Mechanica Solida Sinica, 2010, 23(5): 459-470.
[21] Chondros T G, Dimarogonas A D. A continuous cracked beam vibration theory[J]. Journal of Sound and Vibration, 1998, 215(1): 17-34.
[22] Dimarogonas A D, Paipetis S A. Analytical Methods in Rotor Dynamics[M]. London: Elsevier Applied Science, 1986:147-159.
[23] Clough R.W. Penzien J. Dynamics of Structures[M]. New York: McGraw-Hill, Inc, 1975:351-355.
[24] Douka E. Hadjileontiadis J L. Time-frequency analysis of the free vibration response of a beam with a breathing crack[J]. NDT&E International, 2005, 38: 3-10.
PDF(1500 KB)

368

Accesses

0

Citation

Detail

Sections
Recommended

/