An approximate solution to transverse vibration of a rectangular plate with 4 free edges and its experimental verification

FU Jiang-song 1 XU Jian 1

Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (5) : 92-97.

PDF(1144 KB)
PDF(1144 KB)
Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (5) : 92-97.

An approximate solution to transverse vibration of a rectangular plate with 4 free edges and its experimental verification

  •   FU Jiang-song 1   XU Jian 1
Author information +
History +

Abstract

Aiming at no exact solution to transverse vibration of a rectangular plate with 4 free edges, an approximate solution to transverse vibration mode functions of this plate was proposed here. Following the fact that transverse vibration of a rectangular plate induces various standing waves, trying to combine them and approach the exact solution to mode functions of the rectangular plate, then an approximate solution to transverse vibration mode functions of this plate was formed. In order to verify the validity of the approximate solution, an experimental platform for the transverse vibration of a rectangular plate with 4 free edges was designed and made. The experimental results showed that a series of two-dimensional standing wave patterns (Chladni patterns) of the plate are obtained within the simple harmonic excitation frequency range of 0 to 2000Hz. Comparing the experiment results (Chladni patterns) to the standing wave patterns in the approximate solution, it was shown that they agree well each other qualitatively and quantitatively, so the correctness of the approximate solution is verified.

Key words

rectangular plate with 4 free edges / Chladni pattern / standing wave / vibration mode function / approximate solution

Cite this article

Download Citations
FU Jiang-song 1 XU Jian 1. An approximate solution to transverse vibration of a rectangular plate with 4 free edges and its experimental verification[J]. Journal of Vibration and Shock, 2018, 37(5): 92-97

References

[1] Mindlin R D. Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates[J]. J.of Appl.mech, 1951, 18(1):31-38.
[2] Chang W P, Shoou-Chian J. Nonlinear free vibration of heated orthotropic rectangular plates[J]. International Journal of Solids & Structures, 1986, 22(3):267-281.
[3] Eslami H, Kandil O A. Nonlinear forced vibration of orthotropic rectangular plates using the method of multiple scales[J]. Aiaa Journal, 1971, 27(7):955-960.
[4] Eslami H, Kandil O A. Two-mode nonlinear vibration of orthotropic plates using method of multiple scales[J]. Aiaa Journal, 1989, 27(7):961-967.
[5] Mochida Y, Ilanko S. Bounded natural frequencies of completely free rectangular plates[J]. Journal of Sound & Vibration, 2008, 311(1–2):1-8.
[6] Wang C Y. Vibrations of Completely Free Rounded Regular Polygonal Plates[J]. International Journal of Acoustics & Vibrations, 2015, 20(2):107-112.
[7] 许琪楼. 四角点支承四边自由矩形板自振分析新方法[J]. 振动与冲击, 2013, 32(3):83-86.
XU Qi-lou. A new analysis method for free vibration of a rectangular plate with 4-free-edges and 4 corner point supportsclamped[J] . Joumal of Vibration and Shock, 2013, 32(3):83-86.
[8]  许琪楼.有角点支座矩形板自振分析[J]. 振动与冲击, 2013, 32(17):84-89.
 XU Qi-lou. Free Vibration analysis of a rectangular plate with corner point supports[J] . Joumal of Vibration and Shock, 2013, 32(17):84-89.
[9] 曾军才, 王久法, 姚望,等. 正交各向异性矩形板的自由振动特性分析[J]. 振动与冲击, 2015, 34(24):123-127.
 ZENG Jun-cai, WANG Jiu-fa, YAO Wang, et al.Free vibration characteristics of orthotropic rectangular plates[J] . Joumal of Vibration and Shock, 2015, 34(24):123-127.
[10] 曹志远. 不同边界条件功能梯度矩形板固有频率解的一般表达式[J]. 复合材料学报, 2005, 22(5):172-177.
 CAO Zhi-yuan. Unified expression of natural frequency solutions for functionally graded composite rectangular plates under various boundary conditions[J]. Acta Materiae Compositae Sinica, 2005, 22(5):172-177.
[11] 方奕忠,王 钢,沈 韩,崔新图,廖德驹,冯饶慧.方形薄板二维驻波的研究[J].物理实验,2014,34(1):33-36.
 FANG Yi-zhong, WANG Gang, SHEN Han, CUI Xin-tu, LIAO De-ju, FENG Rao-hui. Research of 2-dimensional standing waves in square plate[J]. Physics Experimentation, 2014,34(1):33-36.
[12] Rossing T D. Chladni’s law for vibrating plates[J]. American Journal of Physics, 1982, 50(3):271-274.
[13] 王继超, 王慧. Chladni图案的MATLAB模拟[J]. 实验科学与技术, 2011, 09(2):181-183.
 WANG Ji-chao, WAHG Hui. Simlation of Chladni Patterns with MATLAB[J]. Experiment Science and Technology, 2011, 09(2):181-183.
PDF(1144 KB)

525

Accesses

0

Citation

Detail

Sections
Recommended

/