Research on dynamic characteristics of piezoelectric cantilever beam generation system considering gravity influence

YANG Qianqian,LIU Lilan

Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (6) : 14-20.

PDF(2702 KB)
PDF(2702 KB)
Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (6) : 14-20.

Research on dynamic characteristics of piezoelectric cantilever beam generation system considering gravity influence

  • YANG Qianqian,LIU Lilan
Author information +
History +

Abstract

The advancement of microelectronics reduces the power of sensors, making it possible to use the ambient vibration to selfsupply the sensors. The mechanical model of a bistable piezoelectric cantilever beam power generation system considering the gravity influence was established, and a dimensionless control equation of the system was obtained. By means of numerical analysis, the influence of gravity on the average output power of the bistable piezoelectric cantilever beam was investigated under the combined excitation of simple harmonic wave and white noise. Combining with the halfpower bandwidth method, the method of determining the minimum influence interval of gravity under white noise excitation was put forward under the premise of ensuring the high power output of the piezoelectric power generation system. The above results can provide  references for the related research of piezoelectric power generation systems.

Key words

 bistable piezoelectric power generation system / simple harmonic excitation / white noise excitation / half power method / minimum influence interval

Cite this article

Download Citations
YANG Qianqian,LIU Lilan. Research on dynamic characteristics of piezoelectric cantilever beam generation system considering gravity influence[J]. Journal of Vibration and Shock, 2018, 37(6): 14-20

References

[1]  Tang X, Zuo L. Enhanced vibration energy harvesting using dual-mass systems[J]. Journal of Sound & Vibration, 2011, 330(21):5199-5209.
[2]  Onur Bilgen, Michael I. Friswell, Shaikh Faruque Ali, et al. Broadband vibration energy harvesting from a vertical cantilever piezocomposite beam with tip mass[J]. International Journal of Structural Stability & Dynamics, 2015, 15(02):1450038.
[3]  Perton M, Audoin B, Pan Y D, et al. Energy harvesting vibration sources for microsystems applications[J]. Measurement Science & Technology, 2006, 17(12):R175-R195.
[4]  Tsujiura M. Piezoelectric ceramic element for power generation and method[P]. US 20050211948 A1,2005.
[5]  Mak K H, Mcwilliam S, Popov A A, et al. Performance of a cantilever piezoelectric energy harvester impacting a bump stop[J]. Journal of Sound & Vibration, 2011, 330(25):6184-6202.
[6] Chen N, Jung H J, Jabbar H, et al. A Piezoelectric impact-induced vibration cantilever energy harvester from Speed Bump with a Low-power Power Management Circuit[J]. Sensors & Actuators A Physical, 2016, 254:134-144.
[7]  Stanton S C, Mcgehee C C, Mann B P. Nonlinear dynamics
for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator[J]. Physica D Nonlinear Phenomena, 2010, 239(10):640-653.
[8]  Burrow S G. Vibration energy harvesters with non-linear compliance[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2008, 6928.
[9]   Pellegrini S P, Tolou N, Schenk M, et al. Bistable vibration energy harvesters:A review[J]. Journal of Intelligent Material Systems & Structures, 2013, 24(11):1303-1312.
[10]  白凤仙, 马桂帅, 董维杰等. 悬臂梁式压电振动能量收集系统输出功率的优化研究[J]. 电子学报, 2014, 42(5):883-889.
     BAI Feng-xian,MA Gui-shuai,DONG Wei-jie, et al. Optimization of the output power of cantilever piezoelectric vibration energy harvesting[J]. Acta Electronica Sinica, 2014, 42(5):883-889.
[11]  Masana R, Daqaq M F. Relative performance of a vibratory energy harvester in mono- and bi-stable potentials[J]. Journal of Sound & Vibration, 2011, 330(24):6036-6052.
[12]  Erturk A, Inman D J. Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling[J]. Journal of Sound & Vibration, 2011, 330(10):2339-2353.
[13]  Stanton S C, Owens B A M, Mann B P. Harmonic balance analysis of the bistable piezoelectric inertial generator[J]. Journal of Sound & Vibration, 2012, 331(15):3617-3627.
[14]  Guo K, Cao S, Wang S. Numerical and experimental studies on nonlinear dynamics and performance of a bistable piezoelectric cantilever generator[J]. Shock & Vibration, 2015, 2015(21):1-14.
[15]  Singh K A, Kumar R, Weber R J. A broadband bistable piezoelectric energy harvester with nonlinear high-power extraction[J]. IEEE Transactions on Power Electronics, 2015, 30(12):6763-6774.
[16]  Saadon S, Sidek O. Vibration-based MEMS piezoelectric energy harvester (VMPEH) modeling and analysis for green energy source[C]// Developments in E-Systems Engineering. IEEE, 2011:527-531.
[17]  Ram G D, Praveenkumar S. PVDF polymer-based MEMS cantilever for energy harvesting[M].Artificial Intelligence and Evolutionary Computations in Engineering Systems. Springer India, 2016.
PDF(2702 KB)

1370

Accesses

0

Citation

Detail

Sections
Recommended

/