Fast eigensystem realization algorithm based structural modal parameters identification for ambient tests

PU Qianhui1,HONG Yu1,WANG Gaoxin2,LI Xiaobin1

Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (6) : 55-60.

PDF(1724 KB)
PDF(1724 KB)
Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (6) : 55-60.

Fast eigensystem realization algorithm based structural modal parameters identification for ambient tests

  • PU Qianhui1,HONG Yu1,WANG Gaoxin2,LI Xiaobin1
Author information +
History +

Abstract

The proposed fast eigensystem realization algorithm (FERA) is an improvement of the ERA, which can improve the calculation efficiency and cut down the data storage. To avoid the singular value decomposition of Hankel matrix, the eigenvalue decomposition of a newly built symmetric matrix was adopted in the method. Asimulated fourstory frame structure was utilized for validating the accuracy and efficiency of the FERA method. The scaled El Centro earthquake was applied to the structure as an unknown excitation. Both FERA and ERA methods were used for extracting the modal parameters from the simulated displacements, velocities and accelerations, respectively. After comparing the modal analysis results with the analytical values, the conclusions show that the FERA can accurately identify modal parameters from any type of dynamic responses, and the computational speed can increase rapidly. In addition, the FERA was used for extracting modal parameters of an inservice pedestrian bridge through ambient test, and the results show that the proposed method can also work for the actual structure.

Key words

FERA / ambient excitation / dynamic response;modal parameter identification

Cite this article

Download Citations
PU Qianhui1,HONG Yu1,WANG Gaoxin2,LI Xiaobin1. Fast eigensystem realization algorithm based structural modal parameters identification for ambient tests[J]. Journal of Vibration and Shock, 2018, 37(6): 55-60

References

[1] James III G H, Carne T G, Lauffer J P. The natural excitation technique (NExT) for modal parameter extraction from operating wind turbines[R]. No. SAND-92-1666, Sandia National Labs., Albuquerque, NM (United States), 1993.
[2] James G H, Carne T G, Lauffer J P, et al. Modal testing using natural excitation[C]//Proceedings of the international modal analysis conference. SEM society for experimental mechanics Inc., 1992. 1208-1208.
[3] Ibrahim S R, Mikulcik E C. A method for the direct identification of vibration parameters from the free response[J]. The shock and vibration bulletin, 1977, 47(4):183-198.
[4] 杨佑发,李帅,李海龙. 环境激励下结构模态参数识别的改进ITD法[J]. 振动与冲击, 2014(1):194-199.
Yang You-fa, Li shuai, Li hai-long. Improved ITD method for structural modal parameter identification under ambient excitation [J]. Journal of vibration and shock,2014(1):194-199.
[5] Juang J N, Pappa R S. An eigensystem realization algorithm for modal parameter identification and model reduction [J]. Journal of guidance, control, and dynamics, 1985, 8(5): 620-627.
[6] Juang J N, Pappa R S. Effects of noise on modalparameters identified by the eigensystem realizationalgorithm [J]. Journal of Guidance Control andDynamics, 1986, 9(3): 294-303.
[7]祁泉泉,辛克贵,崔定宇.扩展特征系统实现算法在结构模态参数识别中的应用[J]. 工程力学,2011,28(3): 29-34.
Qi Quan-quan, Xin Ke-gui, Cui Ding-yu. The application of the extended eigensystem  realization  algorithm  for structural modal parameter identification [J]. Engineering Mechanics, 2011, 28(3): 29-34.
[8] 崔定宇,辛克贵,祁泉泉.扩展特征系统实现算法的模态参数识别特性研究 [J]. 工程力学, 2013, 30(8): 49-53.
Cui Ding-yu,Xin Ke-gui,Qi Quan-quan. Modal parameter identification research for the extended eigensystem realization algorithm [J]. Engineering Mechanics, 2013, 30(8): 49-53.
[9]辛峻峰, 张永波, 盛进路. 一种改进的特征系统实现算法及其在海洋平台上的应用[J]. 振动与冲击, 2015(24):197-201.
Xin Jun-feng, Zhang Yong-bo, Sheng Jin-lu. Improved eigen system realization algorithm and its application in the analysis of ocean platform [J]. Journal of vibration and shock, 2015(24):197-201.
[10] 包兴先,李昌良,刘志慧. 基于低秩Hankel矩阵逼近的模态参数识别方法 [J]. 振动与冲击,2014, 33(20): 57-62.
Bao Xing-xian, Li Chang-liang, & Liu Zhi-hui. Modal parameters identification based on low rank approximation of a Hankel matrix [J]. Journal of vibration and shock, 2014, 33(20): 57-62.
[11] Reynders E. System identification methods for (operational) modal analysis: review and comparison[J]. Archives of Computational Methods in Engineering, 2012, 19(1): 51-124.
[12]刘宇飞, 辛克贵, 樊健生,崔定宇. 环境激励下结构模态参数识别方法综述[J]. 工程力学, 2014, 31(4):46-53.
Liu Yu-fei , Xin Ke-gui, Fan Jian-sheng, Cui Ding-yu. A review of structure modal identification methodsthrough ambient excitation [J]. Engineering mechanics, 2014, 31(4):46-53.
[13] Caicedo J M. Practical guidelines for the natural excitation technique (NExT) and the eigensystem realization algorithm (ERA) for modal identification using ambient vibration[J]. Experimental Techniques, 2011, 35(4): 52-58.
[14] Hong Y, Liu X, Dong X, et al. Experimental model updating using frequency response functions[C]//Lynch J P. Proceedings of SPIE: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems. Las Vegas: 2016. 980325.
[15] Allemang, R J, Brown, D L. A correlation coefficient for modal vector analysis[C]// Proceedings of the 1st international modal analysis conference. Orlando: 1982. 110-116.
[16] Zhu D, Guo J, Wang Y, et al. Field validation of flexure-based mobile sensing nodes on a space frame bridge[C]// Proceedings of the 8th International Workshop on Structural Health Monitoring.Stanford: 2011.13-15.
[17]Zhu D, Cho C, Wang Y. Finite element model updating of a space frame bridge with mobile sensing data[C]// Proceedings of SPIE, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems. San Diego: 2012. 8345:834513.
PDF(1724 KB)

Accesses

Citation

Detail

Sections
Recommended

/