Effects of surface roughness of conductors on their wind loads and vortex-induced vibration

YAN Zhi-tao1,2,WANG Ling-zhi2, LIU Jun2,YOU Yi2,3,SUN Yi1

Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (7) : 146-151.

PDF(2071 KB)
PDF(2071 KB)
Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (7) : 146-151.

Effects of surface roughness of conductors on their wind loads and vortex-induced vibration

  • YAN Zhi-tao1,2,WANG Ling-zhi2, LIU Jun2,YOU Yi2,3,SUN Yi1
Author information +
History +

Abstract

The effect of cross-section shape of conductors on their aerodynamic characteristics is significant. Their bearing wind pressure is almost 50 to 70 % of the whole wind pressure of a transmission line. Aerodynamic characteristics and vortex-induced vibration (VIV) of real conductors with rough cross-section and those of conductors with smooth cross-section were analyzed using the numerical simulation method and   turbulence model based on RANS. The results were compared with those obtained with the test method. The fluid domain was meshed with ICEM. A 2-D circular cylinder in transverse flow direction’s VIV simulation model was established utilizing the dynamic mesh and sliding mesh model and embedding Newmark-β algorithm for structural response computation into the software FLUENT through the user define function (UDF) code. Aerodynamic and vibration characteristics of conductors under uniform flow and higher Reynolds number were studied with the variation of the reduced wind speed and Reynolds number. Simulation results showed that after considering conductors’ surface roughness, aerodynamic force and Strouhal number of fixed conductors drop; the range of conductors VIV’s "locked-in" region becomes wider and the vibration amplitude becomes larger; VIV amplitude of conductors with rough cross-section reaches 0.9D when the reduced wind speed is 5.766; aerodynamic force and vortex stripping mode of conductors with rough cross-section have larger changes, so the effects of surface roughness on aerodynamic characteristics of conductors are bigger.

Key words

transmission conductor / aerodynamic characteristics / vortex-induced vibration (VIV) / numerical simulation

Cite this article

Download Citations
YAN Zhi-tao1,2,WANG Ling-zhi2, LIU Jun2,YOU Yi2,3,SUN Yi1. Effects of surface roughness of conductors on their wind loads and vortex-induced vibration[J]. Journal of Vibration and Shock, 2018, 37(7): 146-151

References

[1]. Zhou CY, So R M C. Vortex induced vibrations of an elastic circular cylinder[J]. Journal of Fluids & Structures, 1999, 13(2):165-189.
[2]. Kim S, Wilson PA, Chen ZM. Numerical simulation of force and wake mode of an oscillating cylinder[J]. Journal of Fluids & Structures, 2014, 44(7):216-225.
[3]. Kikuchi N, MatsuzakiY.Aerodynamic drag of new-design electric power wire in a heavy rainfall and wind[J]. Journal of Wind Engineering and Industrial Aerodynamics , 2003,91(1-2):41-51.
[4]. 党朋, 吴细毛, 刘斌. 新型同心绞导线风阻力系数风洞试验[J]. 电线电缆, 2014,4(1):30-33
DANG Peng,WU Xi-mao, LIU Bin. Wind Tunnel Test on Drag Coefficient of New TypeConcentricLayStranded Conductors[J]. Electric Wire&Cable,2014,4(1):30-33
[5]. 李新民, 朱宽军, 刘彬. 典型覆冰导线空气动力学特性数值和试验模拟[J]. 高电压技术, 2014, 40(2): 427-433.
LI Xin-min, ZHU Kuan-jun, LIU Bin. Numerical and Experimental Simulation of Aerodynamic Characteristics of Typical Iced Conductor[J]. High Voltage Engineering, 2014, 40(2): 427-433.
[6]. 苏铭德, 康钦军. 亚临界雷诺数下圆柱绕流的大涡模拟[J]. 力学学报, 1999, 31(1):100-105.
SU Ming-de, KANG Qin-jun. Large Eddy Simulationofthe Turbulent Flow around a Circular Cylinder at Sub-CriticalReynolds Numbers[J].ActaMechanicaSinica, 1999, 31(1):100-105.
[7]. 陈文礼, 李惠. 基于RANS的圆柱风致涡激振动的CFD数值模拟[J]. 西安建筑科技大学学报(自然科学版), 2006, 38(4):509-513.
CHEN Wen-li, LI Hui. CFD numerical simulation of vortex-induced vibration of a circular cylinder based on a RANS method[J]. J.Xi’an Univ. of Arch. &Tech. (Natural Science Edition), 2006, 38(4):509-513.
[8]. 何长江, 段忠东. 二维圆柱涡激振动的数值模拟[J]. 海洋工程, 2008, 26(1):57-63.
HE Chang-jiang, DUAN Zhong-dong. Numerical simulation of vortex-induced vibration on 2D circular cylinders[J]. The Ocean Engineering, 2008, 26(1):57-63.
[9]. 周国成, 柳贡民. 圆柱涡激振动数值模拟研究[J]. 噪声与振动控制, 2010, 30(5):51-55.
ZHOU Guo-cheng, LIU Gong-min. Numerical Simulation of Vortex-Induced Vibration of a Circular Cylinder[J]. Noise and Vibration Control, 2010, 30(5):51-55.
[10]. 董国朝. 钝体绕流及风致振动流固耦合的CFD研究[D].长沙:湖南大学, 2012.
DONG Guo-chao. CFD Study on Flow Characteristics Around Bluff Body and Fluid-Structure Interaction of Wind-induced Vibration[D].changsha: Hunan University, 2012.
[11]. 孙启刚, 谢强, 宋卓彦. 新型低阻导线气动特性数值模拟[J]. 国网技术学院学报, 2014, 17(6):12-18.
SUN Qi-gang, XIE Qiang, SONG Zhuo-yan. Numerical Simulation of Aerodynamic Characteristics of New Low Resistance Wire[J]. Journal of State Grid Technology College, 2014, 17(6):12-18.
[12]. Dennis S C R, Chang GZ.Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100[J]. J. Fluid Mech, 1970,42(3):471-489.
[13]. Zdravkovich MM.Flow around circular cylindersVol.2:Applications [M].Oxford: OxfordSciencePublications, 2003.
[14]. Khalak A, Williamson C H K. Dynamics of a hydroelastic cylinder with very low mass and damping[J]. Journal of Fluids and Structures, 1996, 10(5):455-472.
[15]. Norberg C. Fluctuating lift on a circular cylinder:reviewandnewmeasurements [J]. Journal of Fluids and Structures, 2003, 17(1): 57–96.
PDF(2071 KB)

374

Accesses

0

Citation

Detail

Sections
Recommended

/