Vibration characteristics of orthotropic circular cylindrical shells based on wave propagation approach and multi-variate analysis

WANG Zhiqiang,LI Xuebin,HUANG Lihua

Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (7) : 227-232.

PDF(1020 KB)
PDF(1020 KB)
Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (7) : 227-232.

Vibration characteristics of orthotropic circular cylindrical shells based on wave propagation approach and multi-variate analysis

  • WANG Zhiqiang , LI Xuebin , HUANG Lihua
Author information +
History +

Abstract

 Free vibration of orthotropic circular cylindrical shells was studied based on Flügge classical thin shell theory and the wave propagation approach. The shells’ boundary conditions were simplified using those of beams. The free vibration problem of the shells was converted into a 6-order algebraic equation for natural frequencies to be solved. Through parametrically solving the solution space for free vibration of orthotropic cylindrical shells was obtained. The multivariate statistical method was used to analyze effects of geometric parameters and material feature parameters of the shells on their natural frequencies, and correlations among these parameters and natural frequencies. ANOVA was used to discuss influence levels of these parameters on natural frequencies. A knowledge and data visualization approach named Self-Organizing Mapping (SOM) was adopted to study features of the solution space. A numerical example was presented here. The study provided a general method for further studying vibration characteristics of orthotropic circular cylindrical shells with complicated boundary conditions and external loads.

Cite this article

Download Citations
WANG Zhiqiang,LI Xuebin,HUANG Lihua . Vibration characteristics of orthotropic circular cylindrical shells based on wave propagation approach and multi-variate analysis[J]. Journal of Vibration and Shock, 2018, 37(7): 227-232

References

 [1] Leissa A W. Vibration of Shells  (NASA SP 288), NASA SP 288[R]. Washington DC: US Government Printing Office, 1993.
 [2] 赵鑫, 张博, 李跃明. 不同边界条件下截顶正交各向异性圆锥壳的振动和声辐射研究[J]. 振动与冲击, 2016,35(3):99-106.
ZHAO Xin,ZHANG Bo,LI Yue-ming.Influences of boundary conditions on the vibration and sound radiation of a truncated orthotropic conical shell[J].Journal of Vibration and Shock,2016,35(3):99-106.
 [3] Liu B, Xing Y F, Qatu M S, et al. Exact characteristic equations for free vibrations of thin orthotropic circular cylindrical shells[J]. Composite Structures, 2012,94:484-493.
 [4] 李学斌. 正交各向异性圆柱壳的稳态动力响应分析[J]. 船舶力学, 2007,11(1):79-87.
     LI Xuebin. Hairmonic response analysis of orthotropic cylindrical shells. Journal of Ship Mechanics, 2007,11(1):79-87.
 [5] Xuebin L. Study on free vibration analysis of circular cylindrical shells using wave propagation[J]. Journal of Sound and Vibration, 2008,311:667-682.
 [6] 马成良, 张海军, 李素平. 现代试验设计优化方法及应用[M]. 郑州: 郑州大学出版社, 2007.
 [7] Johnson R A, Wichern D W. Applied multivariate statistical analysis[M]. 6th. New Jersey: Prentice Hall, 2007.
 [8] Kohonen T. Self-Organizing Maps[M]. 3. Berlin: Springer-Verlag, 2001.
 [9] Flügge. Stresses in Shells[M]. Berlin: Springer-Verlag, 1973.
[10] 季文美, 方同, 陈松淇. 机械振动[M]. 北京: 科学出版社, 1985.
[11] Härdle W K, Simar L. Applied Multivariate Statistical Analysis[M]. Berlin Heidelberg: Springer-Verlag, 2012.
[12] Degroot M H. Probability and Statistics[M]. Wokingham, England: Addison-Wesley Publishing Company, 1989.
[13] 高慧璇. 应用多元统计分析[M]. 北京: 北京大学出版社, 2005.
[14] Mwasiagi J I. Self Organizing Maps - Applications and Novel Algorithm Design[M]. Rijeka, Croatia: InTech, 2011.
[15] Warburton G B, Soni S R. Resonant response of orthotropic cylindrical shells[J]. Journal of Sound and Vibration, 1977,53(1):1-23.
[16] 李学斌. 正交各向异性圆柱壳静动态特性分析及比较研究[D]. 武汉: 华中科技大学, 2004.
[17] Gan L, Li X, Zhang Z. Free vibration analysis of ring-stiffened cylindrical shells using wave propagation approach[J]. Journal of Sound and Vibration, 2009,326:633-646.
[18] Timm N H. Applied multivariate analysis[M]. New York: Springer-Verlag, 2001.
[19] Vesanto J, Himberg J, Alhoniemi E, et al. Self-Organizing Map in Matlab:the Som Toolbox: Proceedings of the Matlab DSP Conference, Espoo, Finland, 1999[C].
 
PDF(1020 KB)

360

Accesses

0

Citation

Detail

Sections
Recommended

/