Aseismic behavior of CFST diagrid tube structures

SHI Qing-xuan, WANG Feng, SANG Dan, WU Chao-feng, WANG Peng

Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (7) : 77-84.

PDF(2112 KB)
PDF(2112 KB)
Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (7) : 77-84.

Aseismic behavior of CFST diagrid tube structures

  • SHI Qing-xuan, WANG Feng, SANG Dan, WU Chao-feng, WANG Peng
Author information +
History +

Abstract

The models of concrete-filled steel tubular (CFST) diagrid tube structures were analyzed with the nonlinear static elastic-plastic time-history analysis method, the nonlinear dynamic elastic-plastic time-history analysis one and the software PERFORM-3D. The structural yield path, lateral displacement, floor drifts, shear hysteretic effect, oblique column damages and their distribution mode were studied. The results showed that CFST diagrid tube structures have a clear force transmission path, a larger lateral stiffness and better spatial working performances; the main and secondary nodes can effectively balance internal force differences of oblique columns, so deformations of node layers are smaller than those of non-node layers; shear hysteretic ratio of diagrid tube structures changes from positive values to negative ones along the floor’s height, the position of negative shear hysteretic ratio occurring for the first time drops with the development of structure’s plasticity; different earthquake waves and different acceleration response amplitudes have a larger influence on damage of oblique column layers, while they have a smaller effect on damage distribution mode of oblique column layers.

Key words

concrete-filled steel tubular (CFST) / diagrid tube structure / aseismic behavior / nonlinear static elastic-plastic analysis / nonlinear dynamic elastic-plastic analysis

Cite this article

Download Citations
SHI Qing-xuan, WANG Feng, SANG Dan, WU Chao-feng, WANG Peng. Aseismic behavior of CFST diagrid tube structures[J]. Journal of Vibration and Shock, 2018, 37(7): 77-84

References

[1] 周健, 汪大绥. 高层斜交网格结构体系的性能研究[J]. 建筑结构, 2007, 37(5): 87-91.
Zhou Jian, Wang Dasui. Performance Research on High-rise Diagonal Frame Structure[J]. Building Structure, 2007, 37(5): 87-91.
[2] 傅学怡, 吴兵, 陈贤川, 等. 卡塔尔某超高层建筑结构设计研究综述[J]. 建筑结构学报, 2008, 29(1): 1-9+15.
Fu Xueyi, Wu Bing Chen Xianchuan, et al. Summarization of research on the structural design of a super high-rise building in Qatar[J]. Journal of Building Structures, 2008, 29(1): 1-9+15.
[3] Moon K S, Connor J J, Fernandez J E. Diagrid structural system for tall building: characteristics and methodology for preliminary design[J]. The Structural Design of Tall and Special Buildings, 2007, 16(2): 205-230.
[4] 方小丹, 韩小雷, 伟宏, 等. 广州西塔巨型斜交网格平面相贯节点试验[J]. 建筑结构学报, 2012, 31(1): 56-62.
Fang Xiaodan, Han Xiaolei, Wei Hong, et al. Experimental study on planar intersecting connections in huge obliquely crossing lattice of Guangzhou West Tower[J]. Journal of Building Structures, 2012 ,31(1): 56-62.
[5] Baker W, Besjak C, Pawlikowski J, et al. 555m Tall Lotte Super Tower, Seoul, Korea[C]// IABSE Congress Report. 2008: 472-473.
[6] Young-Ju Kim, Myeong-Han Kim, and In-Yong Jung et al. Experimental investigation of the cyclic behavior of nodes in diagrid structures[J]. Engineering Structures, 2011,33(7): 2134-2144.
[7] 黄思凝, 郭迅, 刘红彪. 高层钢筋混凝土斜交网格结构振动台试验研究[J]. 振动与冲击, 2012, 31(11): 127-132.
Huang Si-ning, Guo Xun, Liu Hong-biao. Shaking table test for a high-rise diagonal frame structure model[J]. Journal of Vibration and Shock, 2012, 31(11): 127-132.
[8] 张浩. 斜交网格筒标准单元子结构抗震性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
Zhang Hao. Seismic behaviors research on diagrid tube structure standard unit[D]. Harbin: Harbin Institute of Technology, 2011.
[9] 韩艳波. 基于构件尺度的斜交网格筒结构地震损伤评价方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
Han Yanbo. Diagrid tube structural seismic damage evaluation method based on member scales[D]. Harbin: Harbin Institute of Technology, 2012.
[10] Kim J, Park J, Shin S. Seismic Performance of Tubular Structures with Buckling Restrained Braces[J]. The Structural Design of Tall and Special Buildings, 2009,18(4): 351–370.
[11] Jinkoo K, Yong H L. Progressive Collapse Resisting Capacity of Tube-Type Structures[J]. The Structural Design of Tall and Special Buildings, 2010, 19(7): 761-777.
[12] Jinkoo K, Yong H L. Seismic Performance Evaluation of Diagrid System Buildings[J]. The Structural Design of Tall and Special Buildings, 2012,21(10): 736–749.
[13] 韩小雷, 唐剑秋, 黄艺燕. 钢管混凝土巨型斜交网格筒体结构非线性分析[J]. 地震工程与工程振动, 2009, 29(4): 77-84.
Han Xiaolei, Tang Jianqiu, Huang Yiyan. Nonlinear analysis of huge oblique crossing lattice structure with concrete filled steel tube[J]. Earthquake Engineering and Engineering vibration, 2009, 29(4): 77-84.
[14] 史庆轩, 任浩, 戎翀. 高层斜交网格筒结构体系剪力滞后效应研究[J]. 建筑结构, 2016,46(4): 1-7.
Shi Qingxuan, Ren Hao, Rong Chong. Research of shear lag effect on high-rise diagrid tube structural system[J].Building structure, 2016, 46(4) : 1-7.
[15] 赵丰. 高层斜交网格筒结构体系基本力学性能研究[D].  北京: 清华大学, 2012.
Zhao Feng. The basic study on mechanical properties on diagrid tube structural system for high-rise building[D].BeiJing: Tsinghua University, 2012.
[16] GB50936-2014 钢管混凝土结构技术规范[S],北京:中国建筑工业出版社,2014. (GB50936-2014 Technical code for concrete filled steel tubular structures[S], Beijing: China Architecture &Building Press,2014.(In Chinese))
[17] Han Linhai, Liu Wei, Yang Youfu. Behaviour of concrete- filled steel tubular stub columns subjected to axially local compression[J]. Journal of Constructional Steel Research, 2008, 64(3): 377-387.
[18] 杨溥, 李英民, 赖明. 结构时程分析法输入地震波的选择控制指标[J]. 土木工程学报, 2000, 33(6): 33-37.
Yang Pu, Li Yingmin, Lai Ming. A new method for selecting inputting waves for time-history analysis [J]. China Civil Engineering Journal, 2000, 33(6): 33-37.
[19] Powell G H, Allahabadi R. Seismic Damage Prediction by Deterministic Methods: Concepts and Procedures[J]. Earthquake Engineering & Structural Dynamics, 1988, 16(5): 719-734.
PDF(2112 KB)

514

Accesses

0

Citation

Detail

Sections
Recommended

/