Measurement and analysis of ultrasonic speed in the low pressure of CO2 environment based on the optical fiber Fabry-Perot vibration sensor

ZHANG Jingchuan1,YANG Xiaoning1,WANG Jing1,CUI Hanyin2,LI Chao2

Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (8) : 172-179.

PDF(2404 KB)
PDF(2404 KB)
Journal of Vibration and Shock ›› 2018, Vol. 37 ›› Issue (8) : 172-179.

Measurement and analysis of ultrasonic speed in the low pressure of CO2 environment based on the optical fiber Fabry-Perot vibration sensor

  • ZHANG Jingchuan1,YANG Xiaoning1,WANG Jing1,CUI Hanyin2,LI Chao2
Author information +
History +

Abstract

Aiming at the feasibility of the ultrasonic sensing technology applied in the mars environment, a measurement method of ultrasonic velocity in the low pressure of CO2 environment based on the optical fiber Fabry-Perot vibration sensor was proposed. An ultrasonic velocity test system has been designed and implemented. The pressure in the chamber was adjusted from 600 Pa to 1 MPa with different intervals, using four pairs of piezoelectric actuators and sensors, with central frequencies being 21, 25, 34, and 40 kHz respectively, and was applied to generate ultrasonic signals. The experimental results show that, the optical fiber Fabry-Perot (F-P) pressure sensor can adapt to the low pressure environment and can still receive the ultrasonic signals in 600 Pa CO2 environment. The ultrasonic velocity rarely varies with the pressure in the range from 600 Pa to 1 MPa, while it depends on the composition of the gas and the temperature. The ultrasonic velocity in atmosphere is 336.18 m/s, which is travel faster than in CO2 environment 268.79 m/s, and the ultrasonic velocity in 15 ℃, 600 Pa CO2 environment is 271.51 m/s.

Key words

ultrasonic velocity / low-pressure CO2 atmosphere / optical fiber Fabry-Perot vibration sensor

Cite this article

Download Citations
ZHANG Jingchuan1,YANG Xiaoning1,WANG Jing1,CUI Hanyin2,LI Chao2. Measurement and analysis of ultrasonic speed in the low pressure of CO2 environment based on the optical fiber Fabry-Perot vibration sensor[J]. Journal of Vibration and Shock, 2018, 37(8): 172-179

References

[1]欧阳自远,肖福根.火星探测的主要科学问题[J].航天器环境工程, 2011, 28(3):205-217.
Ziyuan Ouyang, Fugen Xiao. Major scientific issuesinvolved in Mars exploration[J]. Spacecraft Environment Engineering,2011, 28(3):205-217 (in Chinese)
[2]欧阳自远,肖福根.火星及其环境[J].航天器环境工程, 2012, 29(6):591-601.
Ziyuan Ouyang, Fugen Xiao. The Mars and its environment[J]. Spacecraft Environment Engineering,2012, 29(6):591-601(in Chinese)
[3]K. S. Novak, J. G. Kempenaar, M. Redmond, et al. Preliminary surface thermal design of the Mars 2020 Rover. 45th International Conference on Environmental Systems, Bellevue, WA, 2015, July16:2015-134.
[4]D. Banfield. A Martian sonic anemometer. Proceedings of the 2005 IEEE Aerospace Conference, 2005, March5-12: 641-647-134.
[5]Weijun Lin, Yang Jia, Chao Li, et al. Ultrasound propagation in the Martian atmosphere, Proc. ICSV 24, London, 2017, July 23-27.
[6]Yang Jia, Weijun Lin, Bo Xue, et al. Experiments of speed of sound in the low pressure atmosphere of Mars, Proc. ICSV 24, London, 2017, July 23-27.
[7]贾阳, 李晔, 吉龙,等.火星探测任务对环境模拟技术的需求展望[J].航天器环境工程, 2015, 32(5):464-468.
Yang Jia, Ye Li, Long, Ji,et al. Demands of Mars exploration missions on environmental simulation technologies[J]. Spacecraft Environment Engineering, 2015, 32(5):464-468(in Chinese).
[8]张磊,刘波涛, 许杰.火星探测器热环境模拟与试验技术探讨[J].航天器环境工程, 2014, 31(3):272-276.
Lei Zhang, Botao Liu, and Jie Xu. The thermal environment simulation and test technology for Mars probe [J].. Spacecraft Environment Engineering,2014, 31(3): 272-276 (in Chinese)
[9]Williams, J.P. Acoustic environment of the martian surface. Geophys. Res. 2001, 106, 5033–5041.
[10]Bass, H.E., Chambers, J.P. Absorption of sound in the Martian atmosphere.Acoust. Soc. Am. 2001, 109, 3069-3071.
[11]A. Petculescu. Acoustic properties in the low and middle atmospheres of Mars and Venus.Acoust. Soc. Am. 2016, 140, 1439-1446.
[12]王瑞,张娜,李韵,等.低气压放电效应研究进展[J].空间电子技术, 2015(5):1-6.
Wang Rui, Zhang Na, Li Yun, et al.Advances in Research on Low Pressure Discharge [J]. SPACE ELECTRONIC TECHNOLOGY,2015(5):1-6(in Chinese) .
[13]单宁,史仪凯,赵江海,等.光纤Fabry-Perot超声传感系统设计与应用[J].光电子•激光,2008, 19(7):881-883.
Shan Ning, Shi Yikai, Zhao Jianghai, et al. Design and application of optical fiber fabry-perot sensing system for detecting ultrasonic waves [J]. JOURNAL OF OPTOELECTRONICS•LASER, 2008, 19(7):881-883(in Chinese).
[14]Kim, T. V., Kwang, S.S., Jin, H. N., et al. Acoustic monitoring of HV equipment with optical fiber sensors[J]. IEEE Transactions on Dielectries and Electrical Insulation, 2003, 10(2):266-270.
[15]郭少朋, 方光荣, 刘俊,等.非本征光纤法珀传感器的振动特性研究[J].振动与冲击,2016, 35(2):158-167.
Guo Shaopeng, Fang Guangrong, Liu Jun, et al. Vibration characteristics of extrinsic fiber Fabry-Perot sensors[J]. Journalof Vibrationand Shocky, 2016, 35(2):158-167 (in Chinese).
PDF(2404 KB)

1375

Accesses

0

Citation

Detail

Sections
Recommended

/